Cation–π Interaction Trigger Supramolecular Hydrogelation of Peptide Amphiphiles
Shuang Chen
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZenghui Li
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorChunhui Zhang
College of Biology, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXia Wu
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116 P. R. China
Search for more papers by this authorWenjie Wang
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorQingjun Huang
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorWeiyu Chen
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Junfeng Shi
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dan Yuan
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShuang Chen
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZenghui Li
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorChunhui Zhang
College of Biology, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXia Wu
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116 P. R. China
Search for more papers by this authorWenjie Wang
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorQingjun Huang
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorWeiyu Chen
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Junfeng Shi
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dan Yuan
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
As an important noncovalent interaction, cation–π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation–π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation–π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation–π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation–π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation–π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202301063-sup-0001-SuppMat.pdf832.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418.
- 2a) M. Ikeda, R. Ochi, A. Wada, I. Hamachi, Chem. Sci. 2010, 1, 491; b) C. J. Bowerman, B. L. Nilsson, J. Am. Chem. Soc. 2010, 132, 9526.
- 3a) J. Shi, X. Du, Y. Huang, J. Zhou, D. Yuan, D. Wu, Y. Zhang, R. Haburcak, I. R. Epstein, B. Xu, J. Am. Chem. Soc. 2015, 137, 26; b) X. Yang, H. Lu, Y. Tao, L. Zhou, H. Wang, Angew. Chem., Int. Ed. 2021, 60, 23797.
- 4G. Fichman, C. Andrews, N. L. Patel, J. P. Schneider, Adv. Mater. 2021, 33, 2103677.
- 5a) H. Wang, J. Shi, Z. Feng, R. Zhou, S. Wang, A. A. Rodal, B. Xu, Angew. Chem., Int. Ed. 2017, 56, 16297; b) J. A. Hunt, R. Chen, T. van Veen, N. Bryan, J. Mater. Chem. B 2014, 2, 5319.
- 6a) J. S. Rudra, Y. F. Tian, J. P. Jung, J. H. Collier, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 622; b) X. Li, Y. Wang, Y. Zhang, C. Liang, Z. Zhang, Y. Chen, Z. W. Hu, Z. Yang, Adv. Funct. Mater. 2021, 31, 2100729.
- 7P. Majumder, A. Singh, Z. Wang, K. Dutta, R. Pahwa, C. Liang, C. Andrews, N. L. Patel, J. Shi, N. de Val, S. T. R. Walsh, A. B. Jeon, B. Karim, C. D. Hoang, J. P. Schneider, Nat. Nanotechnol. 2021, 16, 1251.
- 8a) C. He, S. Wu, D. Liu, C. Chi, W. Zhang, M. Ma, L. Lai, S. Dong, J. Am. Chem. Soc. 2020, 142, 17015; b) J. Li, Y. Zhao, P. Zhou, X. Hu, D. Wang, S. M. King, S. E. Rogers, J. Wang, J. R. Lu, H. Xu, Small 2020, 16, 2003945; c) Y. Xie, Y. Wang, W. Qi, R. Huang, R. Su, Z. He, Small 2017, 13.
- 9H. Cui, E. T. Pashuck, Y. S. Velichko, S. J. Weigand, A. G. Cheetham, C. J. Newcomb, S. I. Stupp, Science 2010, 327, 555.
- 10a) L. S. Birchall, S. Roy, V. Jayawarna, M. Hughes, E. Irvine, G. T. Okorogheye, N. Saudi, E. De Santis, T. Tuttle, A. A. Edwards, R. V. Ulijn, Chem. Sci. 2011, 2, 1349; b) M. Reches, E. Gazit, Science 2003, 300, 625; c) Y. Zhang, Y. Kuang, Y. Gao, B. Xu, Langmuir 2011, 27, 529.
- 11a) B. Sarkar, L. E. O'Leary, J. D. Hartgerink, J. Am. Chem. Soc. 2014, 136, 14417; b) F. Gelain, Z. Luo, S. Zhang, Chem. Rev. 2020, 120, 13434.
- 12a) M. A. Gebbie, W. Wei, A. M. Schrader, T. R. Cristiani, H. A. Dobbs, M. Idso, B. F. Chmelka, J. H. Waite, J. N. Israelachvili, Nat. Chem. 2017, 9, 473; b) M. A. Elsawy, J. K. Wychowaniec, L. A. Castillo Díaz, A. M. Smith, A. F. Miller, A. Saiani, Biomacromolecules 2022, 23, 2624.
- 13a) A. S. Mahadevi, G. N. Sastry, Chem. Rev. 2013, 113, 2100; b) D. A. Dougherty, Acc. Chem. Res. 2013, 46, 885.
- 14S. Qamar, G. Wang, S. J. Randle, F. S. Ruggeri, J. A. Varela, J. Q. Lin, E. C. Phillips, A. Miyashita, D. Williams, F. Strohl, W. Meadows, R. Ferry, V. J. Dardov, G. G. Tartaglia, L. A. Farrer, G. S. Kaminski Schierle, C. F. Kaminski, C. E. Holt, P. E. Fraser, G. Schmitt-Ulms, D. Klenerman, T. Knowles, M. Vendruscolo, P. St George-Hyslop, Cell 2018, 173, 720.
- 15a) K. Nagy-Smith, E. Moore, J. Schneider, R. Tycko, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9816; b) K. J. Nagy, M. C. Giano, A. Jin, D. J. Pochan, J. P. Schneider, J. Am. Chem. Soc. 2011, 133, 14975; c) H. Dong, M. Wang, S. Fan, C. Wu, C. Zhang, X. Wu, B. Xue, Y. Cao, J. Deng, D. Yuan, J. Shi, Angew. Chem., Int. Ed. Engl. 2022, 61, 202212829.
- 16C. Sonmez, K. J. Nagy, J. P. Schneider, Biomaterials 2015, 37, 62.
- 17R. V. Rughani, D. A. Salick, M. S. Lamm, T. Yucel, D. J. Pochan, J. P. Schneider, Biomacromolecules 2009, 10, 1295.
- 18M. F. Pignataro, M. G. Herrera, V. I. Dodero, Molecules 2020, 25, 4854.
- 19D. A. Dougherty, J. Nutr. 2007, 137, 1504S; discussion 1516S–1517S.
- 20M. Yi, F. Wang, W. Tan, J.-T. Hsieh, E. H. Egelman, B. Xu, J. Am. Chem. Soc. 2022, 144, 13055.
- 21S. Song, J. Wang, Z. Cheng, Z. Yang, L. Shi, Z. Yu, Chem. Sci. 2019, 11, 1383.