High-Energy-Density Lithium Metal Batteries with Impressive Li+ Transport Dynamic and Wide-Temperature Performance from −60 to 60 °C
Ran Han
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorZhicheng Wang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDan Huang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorFengrui Zhang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorAnran Pan
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorHaiqi Song
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYumeng Wei
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYang Liu
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorLei Wang
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYajie Li
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Jingjing Xu
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianchen Hu
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaodong Wu
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorRan Han
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorZhicheng Wang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDan Huang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorFengrui Zhang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorAnran Pan
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorHaiqi Song
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYumeng Wei
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYang Liu
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorLei Wang
i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYajie Li
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Jingjing Xu
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianchen Hu
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaodong Wu
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
High-energy-density Li metal batteries (LMBs) with Nickel (Ni)-rich cathode and Li-metal anode have attracted extensive attention in recent years. However, commercial carbonate electrolytes bring severe challenges including poor cycling stability, severe Li dendrite growth and cathode cracks, and narrow operating temperature window, especially hardly work at below −40 °C. In this work, a 2.4 m lithium difluoro(oxalato)borate (LiDFOB) in ethyl acetate (EA) solvent with 20 wt% fluorocarbonate (FEC) (named 2.4m-DEF) is designed to solve Li+ transport dynamic at low temperature and improve interfacial stability between electrolyte with Li anode or Ni-rich cathode. Beneficial lower freezing point, lower viscosity, and higher dielectric constant of EA solvent, the electrolyte exhibits excellent Li+ transport dynamic. Relying on the unique Li+ solvation structure, more DFOB− anions and FEC solvents are decomposed to establish a stable solid electrolyte interface at electrolyte/electrode. Therefore, LiNi0.9Co0.05Mn0.05O2 (NCM90)/Li LMB with 2.4m-DEF enables excellent rate capability (184 mA h g−1 at 30 C) and stable cycling performance with ≈93.7% of capacity retention after 200 cycles at 20 C and room temperature. Moreover, the NCM90/Li LMB with 2.4m-DEF exhibits surprising ultra-low-temperature performance, showing 173 mA h g−1 at −40 °C and 152 mA h g−1 at −60 °C, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202300571-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 2020, 49, 1569.
- 2M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 3X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy 2019, 4, 882.
- 4H. Yuan, X. Ding, T. Liu, J. Nai, Y. Wang, Y. Liu, C. Liu, X. Tao, Mater. Today 2022, 53, 173.
- 5H. Yang, J. Li, Z. Sun, R. Fang, D. W. Wang, K. He, H. M. Cheng, F. Li, Energy Storage Mater. 2020, 30, 113.
- 6D. Yaakov, Y. Gofer, D. Aurbach, I. C. Halalay, J. Electrochem. Soc. 2010, 157, A1383.
- 7Z. Wang, H. Zhang, J. Xu, A. Pan, F. Zhang, L. Wang, R. Han, J. Hu, M. Liu, X. Wu, Adv. Funct. Mater. 2022, 32, 2112598.
- 8R. Dharavath, A. Murali, A. W. Tarapathi, B. T. Srinivasan, R. Kammili, Int. J. Electrochem. 2019, 2019, 1.
- 9B. Liu, J. G. Zhang, W. Xu, Joule 2018, 2, 833.
- 10M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.
- 11A. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001972.
- 12X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.
- 13W. Li, E. M. Erickson, A. Manthiram, Nat. Energy 2020, 5, 26.
- 14W. Zhao, J. Zheng, L. Zou, H. Jia, B. Liu, H. Wang, M. H. Engelhard, C. Wang, W. Xu, Y. Yang, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1800297.
- 15X. Zhang, L. Zou, Y. Xu, X. Cao, M. H. Engelhard, B. E. Matthews, L. Zhong, H. Wu, H. Jia, X. Ren, P. Gao, Z. Chen, Y. Qin, C. Kompella, B. W. Arey, J. Li, D. Wang, C. Wang, J. G. Zhang, W. Xu, Adv. Energy Mater. 2020, 10, 2000368.
- 16X. Ren, L. Zou, S. Jiao, D. Mei, M. H. Engelhard, Q. Li, H. Lee, C. Niu, B. D. Adams, C. Wang, J. Liu, J. G. Zhang, W. Xu, ACS Energy Lett. 2019, 4, 896.
- 17H. Sun, G. Zhu, Y. Zhu, M. C. Lin, H. Chen, Y. Y. Li, W. H. Hung, B. Zhou, X. Wang, Y. Bai, M. Gu, C. L. Huang, H. C. Tai, X. Xu, M. Angell, J. J. Shyue, H. Dai, Adv. Mater. 2020, 32, 2001741.
- 18C. C. Su, M. He, J. Shi, R. Amine, J. Zhang, K. Amine, Angew. Chem., Int. Ed. 2020, 59, 18233.
- 19T. M. Hagos, H. K. Bezabh, H. G. Redda, E. A. Moges, W. H. Huang, C. J. Huang, W. N. Su, H. Dai, B. J. Hwang, J. Power Sources 2021, 512, 230388.
- 20X. Dong, Z. Guo, Z. Guo, Y. Wang, Y. Xia, Joule 2018, 2, 902.
- 21X. Dong, Y. Lin, P. Li, Y. Ma, J. Huang, D. Bin, Y. Wang, Y. Qi, Y. Xia, Angew. Chem., Int. Ed. 2019, 58, 5623.
- 22R. Petibon, J. Harlow, D. B. Le, J. R. Dahn, Electrochim. Acta 2015, 154, 227.
- 23M. Mao, B. Huang, Q. Li, C. Wang, Y. B. He, F. Kang, Nano Energy 2020, 78, 105282.
- 24H. M. Zhou, K. W. Xiao, J. Li, D. M. Xiao, Y. X. Jiang, J. Cent. South Univ. 2018, 25, 550.
- 25H. N. Al-Jallo, F. N. Al-Azawi, Spectrochim. Acta A 1978, 34, 819.
- 26E. Markevich, G. Salitra, M. Afri, Y. Talyosef, D. Aurbach, J. Electrochem. Soc. 2020, 167, 070509.
- 27Y. Yang, Y. Yin, D. M. Davies, M. Zhang, M. Mayer, Y. Zhang, E. S. Sablina, S. Wang, J. Z. Lee, O. Borodin, C. S. Rustomji, Y. S. Meng, Energy Environ. Sci. 2020, 13, 2209.
- 28X. R. Chen, B. C. Zhao, C. Yan, Q. Zhang, Adv. Mater. 2021, 33, 2004128.
- 29J. Xu, Y. Hu, T. liu, X. Wu, Nano Energy 2014, 5, 67.
- 30Z. Wang, F. Zhang, Y. Sun, L. Zheng, Y. Shen, D. Fu, W. Li, A. Pan, L. Wang, J. Xu, J. Hu, X. Wu, Adv. Energy Mater. 2021, 11, 2003752.
- 31A. Pan, Z. Wang, F. Zhang, L. Wang, J. Xu, J. Zheng, J. Hu, C. Zhao, X. Wu, Nano Res. 2022.
- 32G. X. Li, H. Jiang, R. Kou, D. Wang, A. Nguyen, M. Liao, P. Shi, A. Silver, D. Wang, ACS Energy Lett. 2022, 7, 2282.
- 33S. Lin, H. Hua, P. Lai, J. Zhao, Adv. Energy Mater. 2021, 11, 2101775.
- 34J. Yang, X. Li, K. Qu, Y. Wang, K. Shen, C. Jiang, B. Yu, P. Luo, Z. Li, M. Chen, B. Guo, M. Wang, J. Chen, Z. Ma, Y. Huang, Z. Yang, P. Liu, R. Huang, X. Ren, D. Mitlin, Carbon Energy 2022.
- 35J. Evans, C. A. Vincent, P. G. Bruce, Polymer 1987, 28, 2324.
- 36R. Gholizadeh, Y. Wang, Chem. Eng. Sci. 2018, 184, 62.
- 37Z. Fang, Y. Yang, T. Zheng, N. Wang, C. Wang, X. Dong, Y. Wang, Y. Xia, Energy Storage Mater. 2021, 42, 477.
- 38N. H. C. Lewis, Y. Zhang, B. Dereka, E. V. Carino, E. J. Maginn, A. Tokmakoff, J. Phys. Chem. C 2020, 124, 3470.
- 39B. Delley, J. Chem. Phys. 1990, 92, 508.
- 40Z. Wang, Y. Sun, Y. Mao, F. Zhang, L. Zheng, D. Fu, Y. Shen, J. Hu, H. Dong, J. Xu, X. Wu, Energy Storage Mater. 2020, 30, 228.
- 41X. Q. Zhang, X. Chen, X. B. Cheng, B. Q. Li, X. Shen, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2018, 57, 5301.