In Situ Detecting Thermal Stability of Solid Electrolyte Interphase (SEI)
Jipeng Wu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSuting Weng
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiao Zhang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWenwu Sun
Thermo Fisher Scientific (China) Co. Ltd. , Xinjinqiao Road, Shanghai, 201206 China
Search for more papers by this authorWei Wu
Thermo Fisher Scientific (China) Co. Ltd. , Xinjinqiao Road, Shanghai, 201206 China
Search for more papers by this authorQiyu Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiqian Yu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLiquan Chen
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Zhaoxiang Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xuefeng Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd., Liyang, Jiangsu, 213300 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJipeng Wu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSuting Weng
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiao Zhang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWenwu Sun
Thermo Fisher Scientific (China) Co. Ltd. , Xinjinqiao Road, Shanghai, 201206 China
Search for more papers by this authorWei Wu
Thermo Fisher Scientific (China) Co. Ltd. , Xinjinqiao Road, Shanghai, 201206 China
Search for more papers by this authorQiyu Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiqian Yu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLiquan Chen
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Zhaoxiang Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xuefeng Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd., Liyang, Jiangsu, 213300 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Solid electrolyte interphase (SEI) plays an important role in regulating the interfacial ion transfer and safety of Lithium-ion batteries (LIBs). It is unstable and readily decomposed releasing much heat and gases and thus triggering thermal runaway. Herein, in situ heating X-ray photoelectron spectroscopy is applied to uncover the inherent thermal decomposition process of the SEI. The evolution of the composition, nanostructure, and the released gases are further probed by cryogenic transmission electron microscopy, and gas chromatography. The results show that the organic components of SEI are readily decomposed even at room temperature, releasing some flammable gases (e.g., H2, CO, C2H4, etc.). The residual SEI after heat treatment is rich in inorganic components (e.g., Li2O, LiF, and Li2CO3), provides a nanostructure model for a beneficial SEI with enhanced stability. This work deepens the understanding of SEI intrinsic thermal stability, reveals its underlying relationship with the thermal runaway of LIBs, and enlightens to enhance the safety of LIBs by achieving inorganics-rich SEI.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202208239-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. S. Zhang, K. Xu, T. R. Jow, J. Power Sources 2003, 166; b) M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, R. J. Staniewicz, J. Power Sources 2001, 97, 13; c) D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, D. U. Sauer, J. Power Sources 2011, 196, 5334.
- 2a) T. T. D. Nguyen, S. Abada, A. Lecocq, J. Bernard, M. Petit, G. Marlair, S. Grugeon, S. Laruelle, World Electr. Veh. J. 2019, 10, 79;
10.3390/wevj10040079 Google Scholarb) X. Liu, D. Ren, H. Hsu, X. Feng, G.-L. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, J. Li, X. He, K. Amine, M. Ouyang, Joule 2018, 2, 2047.
- 3a) X. Feng, D. Ren, X. He, M. Ouyang, Joule 2020, 4, 743; b) D. Ren, H. Hsu, R. Li, X. Feng, D. Guo, X. Han, L. Lu, X. He, S. Gao, J. Hou, Y. Li, Y. Wang, M. Ouyang, eTransportation 2019, 2, 100034.
- 4a) J. Kalhoff, G. G. Eshetu, D. Bresser, S. Passerini, ChemSusChem 2015, 8, 2154;. b) Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources 2012, 208, 210; c) N.-S. Choi, I. A. Profatilova, S.-S. Kim, E.-H. Song, Thermochim. Acta 2008, 480, 10.
- 5a) X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren, W. Xu, S. Lapidus, H. Wang, X. He, Z. Chen, G.-L. Xu, M. Ouyang, K. Amine, Nat. Commun. 2021, 12, 4235;. b) I. A. Profatilova, S.-S. Kim, N.-S. Choi, Electrochim. Acta 2009, 54, 4445; c) H. Yang, H. Bang, K. Amine, J. Prakasha, J. Electrochem. Soc. 2005, 152, A73.
- 6a) H. Wu, H. Jia, C. Wang, J. G. Zhang, W. Xu, Adv. Energy Mater. 2021, 11, 2003092; b) E. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703.
- 7P. Verma, P. Maire, P. Novák, Electrochim. Acta 2010, 55, 6332.
- 8Q. Wang, J. Sun, X. Yao, C. Chen, Thermochim. Acta 2005, 437, 12.
- 9D. Zane, A. Antonini, M. Pasquali, J. Power Sources 2001, 97–98, 146.
- 10a) M. Zhou, L. Zhao, S. Okada, J.-i. Yamaki, J. Electrochem. Soc. 2011, 159, A44; b) D. D. MacNeil, D. Larcher, J. R. Dahna, J. Electrochem. Soc. 1999, 146, 3596; c) L. Ma, J. Xia, X. Xia, J. R. Dahn, J. Electrochem. Soc. 2014, 161, A1495.
- 11a) V. A. Agubra, J. W. Fergus, J. Power Sources 2014, 268, 153; b) P. Murmann, P. Niehoff, R. Schmitz, S. Nowak, H. Gores, N. Ignatiev, P. Sartori, M. Winter, R. Schmitz, Electrochim. Acta 2013, 114, 658; c) Z. Zeng, W. I. Liang, H. G. Liao, H. L. Xin, Y. H. Chu, H. Zheng, Nano Lett. 2014, 14, 1745;. d) K. C. Möller, H. J. Santner, W. Kern, S. Yamaguchi, J. O. Besenhard, M. Winter, J. Power Sources 2003, 119–121, 561.
- 12a) A. M. Andersson, M. Herstedt, A. G. Bishop, K. Edstrom, Electrochim. Acta 2002, 47, 1885; b) K. EdstroÈm, A. M. Andersson, A. Bishop, L. Fransson, J. Lindgren, A. HusseÂnius, J. Power Sources 2001, 97–98, 87; c) C. E. L. Foss, A. M. Svensson, Ø. Gullbrekken, S. Sunde, F. Vullum-Bruer, J. Energy Storage 2018, 17, 395.
- 13A. G. Shard, J. Vac. Sci. Technol., A 2020, 38, 041201.
- 14J. Wu, M. Ihsan-Ul-Haq, Y. Chen, J.-K. Kim, Nano Energy 2021, 89, 106489.
- 15T. Yoon, M. S. Milien, B. S. Parimalam, B. L. Lucht, Chem. Mater. 2017, 29, 3237.
- 16S. Zhang, G. Yang, S. Liu, X. Li, X. Wang, Z. Wang, L. Chen, Nano Energy 2020, 70, 104486.
- 17V. Shutthanandan, M. Nandasiri, J. Zheng, M. H. Engelhard, W. Xu, S. Thevuthasan, V. Murugesan, J. Electron Spectrosc. Relat. Phenom. 2019, 231, 2.
- 18S. Verdier, L. El Ouatani, R. Dedryvère, F. Bonhomme, P. Biensan, D. Gonbeau, J. Electrochem. Soc. 2007, 154, A1088.
- 19C. Xu, B. Sun, T. Gustafsson, K. Edström, D. Brandell, M. Hahlin, J. Mater. Chem. A 2014, 2, 7256.
- 20G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang, L. Chen, Energy Storage Mater. 2019, 23, 350.
- 21J.-S. Shin, C.-H. Han, U.-H. Jung, S.-I. Lee, H.-J. Kim, K. Kim, J. Power Sources 2002, 109, 47.
- 22A. M. Tripathi, W. N. Su, B. J. Hwang, Chem. Soc. Rev. 2018, 47, 736.
- 23A. Choukourov, A. Grinevich, O. Polonskyi, J. Hanus, J. Kousal, D. Slavinska, H. Biederman, J. Phys. Chem. B 2009, 113, 2984.
- 24M. Boniface, L. Quazuguel, J. Danet, D. Guyomard, P. Moreau, P. Bayle-Guillemaud, Nano Lett. 2016, 16, 7381.
- 25a) P. Zhang, B. Han, X. Yang, Y. Zou, X. Lu, X. Liu, Y. Zhu, D. Wu, S. Shen, L. Li, Y. Zhao, J. S. Francisco, M. Gu, J. Am. Chem. Soc. 2022, 144, 2129;. b) K. Nishikawa, K. Shinoda, J. Phys. Chem. Lett. 2021, 12, 3922.
- 26a) J. K. Feng, Y. L. Cao, X. P. Ai, H. X. Yang, Electrochim. Acta 2008, 53, 8265; b) X. Ding, Y.-X. Li, F. Chen, X.-D. He, A. Yasmin, Q. Hu, Z.-Y. Wen, C.-H. Chen, J. Mater. Chem. A 2019, 7, 11513; c) C. Fu, J. Wang, J. Wang, L. Meng, W. Zhang, X. Li, L. Li, J. Mater. Chem. A 2019, 7, 23149; d) M. Li, Y. Zhou, X. Wu, L. Duan, C. Zhang, F. Zhang, D. He, Electrochim. Acta 2018, 275, 18; e) Y. Yang, Z. Wang, G. Yan, H. Guo, J. Wang, X. Li, Y. Zhou, R. Zhou, Ceram. Int. 2017, 43, 8590.