High-Efficiency Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Loaded 3D Marigold Flower-Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications
Punnarao Manchi
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorSontyana Adonijah Graham
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorHarishkumarreddy Patnam
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorMandar Vasant Paranjape
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorCorresponding Author
Jae Su Yu
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorPunnarao Manchi
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorSontyana Adonijah Graham
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorHarishkumarreddy Patnam
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorMandar Vasant Paranjape
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
Search for more papers by this authorCorresponding Author
Jae Su Yu
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
Triboelectric nanogenerators (TENGs) are one of the most trending energy harvesting devices because of their efficient and simple mechanism in harvesting mechanical energy from the environment into electricity. Herein, ferroelectric and dielectric bismuth tungstate (Bi2WO6 (BWO)) with a marigold flower-like structure is prepared via a hydrothermal method, which is embedded in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), forming a PVDF-HFP/BWO composite polymer film (CPF) to fabricate TENGs. Generally, the ferroelectric materials exhibit a large piezoelectric coefficient, high electrostatic dipole moment, and high dielectric constant. The prepared PVDF-HFP/BWO CPF reveals a high polar crystalline β-phase which leads to enhanced piezoelectric and ferroelectric properties of the CPF, thus resulting in the increased electrical performance of the fabricated TENG. The electrical output performance of the proposed TENG is systematically investigated by varying the amount of BWO material embedded in the PVDF-HFP polymer. The fabricated PVDF-HFP/2.5 wt% BWO CPF-based TENG device exhibits the highest electrical output performance. Additionally, the robust test of the TENG device is conducted to investigate the electrical performance for long-term durability and mechanical stability. Finally, the proposed TENG is operated as a self-powered sensor, harvesting mechanical energy from daily life human activities, and powering various low-power portable electronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202200822-sup-0001-SuppMat.pdf777.1 KB | Supporting Information |
smll202200822-sup-0002-VideoS1.mp44.5 MB | Supplemental Video 1 |
smll202200822-sup-0003-VideoS2.mp424.3 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhang, L. Xu, Z. Liu, X. Cui, Z. Xiang, J. Bai, D. Jiang, J. Xue, C. Wang, Y. Lin, Nano Energy 2021, 85, 106009.
- 2L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, W. Yang, Z. L. Wang, Adv. Mater. 2016, 28, 1650.
- 3R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai, X. Liang, L. Xu, T. Jiang, X. Chen, Z. L. Wang, Adv. Mater. Technol. 2019, 4, 1800514.
- 4M.-L. Seol, S.-B. Jeon, J.-W. Han, Y.-K. Choi, Nano Energy 2017, 31, 233.
- 5G. Zhu, B. Peng, J. Chen, Q. Jing, Z. L. Wang, Nano Energy 2015, 14, 126.
- 6X. Zhao, Y. Zhou, J. Xu, G. Chen, Y. Fang, T. Tat, X. Xiao, Y. Song, S. Li, J. Chen, Nat. Commun. 2021, 12, 6755.
- 7G. Chen, Y. Li, M. Bick, J. Chen, Chem. Rev. 2020, 120, 3668.
- 8X. Zhao, H. Askari, J. Chen, Joule 2021, 5, 1391.
- 9Y. Zou, V. Raveendran, J. Chen, Nano Energy 2020, 77, 105303.
- 10Y. Zou, A. Libanori, J. Xu, A. Nashalian, J. Chen, Research 2020, 2020, 7158953.
- 11Y. Zhou, X. Zhao, J. Xu, Y. G. Chen, Y. Song, S. Li, J. Chen, Nat. Mater. 2021, 20, 1670.
- 12M. Punnarao, S. A. Graham, P. Harishkumarreddy, A. Nagamalleswara Rao, S.-J. Kim, J. S. Yu, ACS Appl. Mater. Interfaces 2021, 13, 46526.
- 13Z. Hanani, I. Izanzar, M. b. Amjoud, D. Mezzane, M. Lahcini, H. Uršič, U. Prah, I. Saadoune, M. El Marssi, I. A. Luk'yanchuk, Nano Energy 2021, 81, 105661.
- 14C. Li, S. Xu, J. Yu, Z. Li, W. Li, J. Wang, A. Liu, B. Man, S. Yang, C. Zhang, Nano Energy 2021, 81, 105585.
- 15L. Liu, Q. Shi, Z. Sun, C. Lee, Nano Energy 2021, 86, 106154.
- 16L. Long, W. Liu, Z. Wang, W. He, G. Li, Q. Tang, H. Guo, X. Pu, Y. Liu, C. Hu, Nat. Commun. 2021, 12, 4689.
- 17X. Guan, B. Xu, J. Gong, Nano Energy 2020, 70, 104516.
- 18Y. Guo, X.-S. Zhang, Y. Wang, W. Gong, Q. Zhang, H. Wang, J. Brugger, Nano Energy 2018, 48, 152.
- 19S. A. Graham, D. Bhaskar, P. Harishkumarreddy, M. Anki Reddy, J. S. Yu, ACS Energy Lett. 2020, 5, 2140.
- 20Z. Liu, H. Li, B. Shi, Y. Fan, Z. L. Wang, Z. Li, Adv. Funct. Mater. 2019, 29, 1808820.
- 21Y. Jie, H. Zhu, X. Cao, Y. Zhang, N. Wang, L. Zhang, Z. L. Wang, ACS Nano 2016, 10, 10366.
- 22Z. L. Wang, J. Chen, L. Lin, Energy Environ. Sci. 2015, 8, 2250.
- 23M. Muthu, R. Pandey, X. Wang, A. Chandrasekhar, I. Palani, V. Singh, Nano Energy 2020, 78, 105205.
- 24P.-Y. Feng, Z. Xia, B. Sun, X. Jing, H. Li, X. Tao, H.-Y. Mi, Y. Liu, ACS Appl. Mater. Interfaces 2021, 13, 16916.
- 25S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z. L. Wang, Nano Lett. 2013, 13, 2226.
- 26D. Bhaskar, L. K. Bharat, P. Harishkumarreddy, M. Anki Reddy, J. S. Yu, J. Mater. Chem. A 2018, 6, 16101.
- 27H. H. Singh, N. Khare, Nano Energy 2018, 51, 216.
- 28J.-H. Zhang, Y. Zhang, N. Sun, Y. Li, J. Du, L. Zhu, X. Hao, Nano Energy 2021, 84, 105892.
- 29K. Eom, Y.-E. Shin, J.-K. Kim, S. H. Joo, K. Kim, S. K. Kwak, H. Ko, J. Jin, S. J. Kang, Nano Lett. 2020, 20, 6651.
- 30P. Harishkumarreddy, D. Bhaskar, A. Nagamalleswara Rao, M. Anki Reddy, S. A. Graham, S.-J. Kim, J. S. Yu, Compos. Sci. Technol. 2020, 188, 107963.
- 31M. Punnarao, S. A. Graham, D. Bhaskar, P. Harishkumarreddy, J. S. Yu, Compos. Sci. Technol. 2021, 201, 108540.
- 32D. H. Kim, D. Bhaskar, J. S. Yu, ACS Sustainable Chem. Eng. 2018, 6, 8525.
- 33N. Soin, P. Zhao, K. Prashanthi, J. Chen, P. Ding, E. Zhou, T. Shah, S. C. Ray, C. Tsonos, T. Thundat, Nano Energy 2016, 30, 470.
- 34I. Swathi, V. Jella, A.-M. Thomas, C. Yoon, J. S. Jung, S.-G. Yoon, J. Mater. Chem. A 2021, 9, 15993.
- 35Y. Cho, J. B. Park, B.-S. Kim, J. Lee, W.-K. Hong, I.-K. Park, J. E. Jang, J. I. Sohn, S. Cha, J. M. Kim, Nano Energy 2015, 16, 524.
- 36D. K. Bharti, S. Veeralingam, S. Badhulika, Mater. Horiz. 2022, 9, 663.
- 37S. Ippili, V. Jella, S. Eom, S. Hong, S. G. Yoon, ACS Appl. Mater. Interfaces 2020, 12, 50472.
- 38Y. Wu, J. Qu, W. A. Daoud, L. Wang, T. Qi, J. Mater. Chem. A 2019, 7, 13347.
- 39Y. Park, Y. E. Shin, J. Park, Y. Lee, M. P. Kim, Y. R. Kim, H. Ko, ACS Nano 2020, 14, 7101.
- 40M. F. Lin, K. Parida, X. Cheng, P. S. Lee, Adv. Mater. Technol. 2017, 2, 1600186.
- 41P. Sahatiya, S. Kannan, S. Badhulika, Appl. Mater. Today 2018, 13, 91.
- 42A. Sasmal, S. K. Medda, P. S. Devi, S. Sen, Nanoscale 2020, 12, 20908.
- 43X. Du, Y. Liu, J. Wang, H. Niu, Z. Yuan, S. Zhao, C. Li, ACS Appl. Mater. Interfaces 2018, 10, 25683.
- 44S. K. Karan, R. Bera, S. Paria, A. K. Das, S. Maiti, A. Maitra, B. B. Khatua, Adv. Energy Mater. 2016, 6, 1601016.
- 45C. Wu, T. W. Kim, J. H. Park, H. An, J. Shao, X. Chen, Z. L. Wang, ACS Nano 2017, 11, 8356.
- 46M. Kim, S. H. Kim, M. U. Park, C. Lee, M. Kim, Y. Yi, K.-H. Yoo, Nano Energy 2019, 65, 104079.
- 47Y. Li, J. Liu, X. Huang, G. Li, Cryst. Growth Des. 2007, 7, 1350.
- 48X. Wang, L. Chang, J. Wang, N. Song, H. Liu, X. Wan, Appl. Surf. Sci. 2013, 270, 685.
- 49M. Arya, M. Kaur, A. Kaur, S. Singh, P. Devi, S. K. Kansal, Opt. Mater. 2020, 107, 110126.
- 50J. He, W. Wang, F. Long, Z. Zou, Z. Fu, Z. Xu, Mater. Sci. Eng. B 2012, 177, 967.
- 51G. Zhang, Z. Hu, M. Sun, Y. Liu, L. Liu, H. Liu, C. P. Huang, J. Qu, J. Li, Adv. Funct. Mater. 2015, 25, 3726.
- 52N. Tian, Y. Zhang, H. Huang, Y. He, Y. Guo, J. Phys. Chem. C 2014, 118, 15640.
- 53L. Xie, X. Huang, K. Yang, S. Li, P. Jiang, J. Mater. Chem. A 2014, 2, 5244.
- 54D. L. Vu, C. P. Vo, C. D. Le, K. K. Ahn, Int. J. Energy Res. 2021, 45, 8960.
- 55G.-Y. Li, J. Li, Z.-J. Li, Y.-P. Zhang, X. Zhang, Z.-J. Wang, W.-P. Han, B. Sun, Y.-Z. Long, H.-D. Zhang, Adv. Compos. Hybrid Mater. 2021, http://doi.org/10.1007/s42114-021-00331-z.
- 56G. A. Kaur, S. Kumar, M. Shandilya, J. Mater. Sci.: Mater. Electron. 2020, 31, 20303.
- 57H. Parangusan, D. Ponnamma, M. A. A. Al-Maadeed, Sci. Rep. 2018, 8, 754.
- 58M. Tayyab, J. Wang, J. Wang, M. Maksutoglu, H. Yu, G. Sun, F. Yildiz, M. Eginligil, W. Huang, Nano Energy 2020, 77, 105178.
- 59K. Shi, B. Sun, X. Huang, P. Jiang, Nano Energy 2018, 52, 153.
- 60R. Sahoo, S. Mishra, L. Unnikrishnan, S. Mohanty, S. Mahapatra, S. K. Nayak, S. Anwar, A. Ramadoss, Mater. Sci. Semicond. Process. 2020, 117, 105173.
- 61W. Qin, P. Zhou, X. Xu, M. S. Irshad, Y. Qi, T. Zhang, Sens. Actuators, A 2021, 333, 113307.
- 62D. Ponnamma, A. Erturk, H. Parangusan, K. Deshmukh, M. B. Ahamed, M. A. A. Al-Maadeed, Emergent Mater. 2018, 1, 55.
- 63Y. H. Kwon, S.-H. Shin, Y.-H. Kim, J.-Y. Jung, M. H. Lee, J. Nah, Nano Energy 2016, 25, 225.
- 64L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang, H. Xu, J. Chen, W. Xuan, S. Zhang, S. Li, Nano Energy 2021, 80, 105599.
- 65V. Vivekananthan, W. J. Kim, A. Nagamalleswara Rao, Y. Purusothaman, G. Khandelwal, S.-J. Kim, J. Mech. Sci. Technol. 2021, 35, 2131.
- 66D. Bhaskar, D. H. Kim, J. S. Yu, Nano Res. 2018, 11, 101.
- 67I. Chinya, A. Pal, S. Sen, Mater. Res. Bull. 2019, 118, 110515.
- 68K. Shi, H. Zou, B. Sun, P. Jiang, J. He, X. Huang, Adv. Funct. Mater. 2020, 30, 1904536.
- 69S. A. Graham, D. Bhaskar, M. Anki Reddy, P. Harishkumarreddy, J. S. Yu, Nano Energy 2019, 61, 505.
- 70X. Tian, T. Hua, ACS Sustainable Chem. Eng. 2021, 9, 13356.
- 71W. Wang, J. Zhou, S. Wang, F. Yuan, S. Liu, J. Zhang, X. Gong, Nano Energy 2021, 91, 106657.
- 72M. Sahu, V. Vivekananthan, S. Hajra, D. K. Khatua, S.-J. Kim, Appl. Mater. Today 2021, 22, 100900.