Volume 18, Issue 20 2200822
Research Article

High-Efficiency Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Loaded 3D Marigold Flower-Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications

Punnarao Manchi

Punnarao Manchi

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea

Search for more papers by this author
Sontyana Adonijah Graham

Sontyana Adonijah Graham

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea

Search for more papers by this author
Harishkumarreddy Patnam

Harishkumarreddy Patnam

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea

Search for more papers by this author
Mandar Vasant Paranjape

Mandar Vasant Paranjape

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea

Search for more papers by this author
Jae Su Yu

Corresponding Author

Jae Su Yu

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do, 17104 Republic of Korea

E-mail: [email protected]

Search for more papers by this author
First published: 14 April 2022
Citations: 9

Abstract

Triboelectric nanogenerators (TENGs) are one of the most trending energy harvesting devices because of their efficient and simple mechanism in harvesting mechanical energy from the environment into electricity. Herein, ferroelectric and dielectric bismuth tungstate (Bi2WO6 (BWO)) with a marigold flower-like structure is prepared via a hydrothermal method, which is embedded in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), forming a PVDF-HFP/BWO composite polymer film (CPF) to fabricate TENGs. Generally, the ferroelectric materials exhibit a large piezoelectric coefficient, high electrostatic dipole moment, and high dielectric constant. The prepared PVDF-HFP/BWO CPF reveals a high polar crystalline β-phase which leads to enhanced piezoelectric and ferroelectric properties of the CPF, thus resulting in the increased electrical performance of the fabricated TENG. The electrical output performance of the proposed TENG is systematically investigated by varying the amount of BWO material embedded in the PVDF-HFP polymer. The fabricated PVDF-HFP/2.5 wt% BWO CPF-based TENG device exhibits the highest electrical output performance. Additionally, the robust test of the TENG device is conducted to investigate the electrical performance for long-term durability and mechanical stability. Finally, the proposed TENG is operated as a self-powered sensor, harvesting mechanical energy from daily life human activities, and powering various low-power portable electronics.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.