Hierarchical Core–Shell Co2N/CoP Embedded in N, P-doped Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts for Zn-air Batteries
Chongchao Yao
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Search for more papers by this authorJiaxin Li
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhihao Zhang
Key laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Beijing, 100085 P. R. China
Search for more papers by this authorChunli Gou
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Search for more papers by this authorZhongshen Zhang
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Search for more papers by this authorGang Pan
Integrated Water-Energy-Food Facility (iWEF), School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire, NG25 0QF UK
Search for more papers by this authorCorresponding Author
Jing Zhang
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
E-mail: [email protected]
Search for more papers by this authorChongchao Yao
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Search for more papers by this authorJiaxin Li
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhihao Zhang
Key laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Beijing, 100085 P. R. China
Search for more papers by this authorChunli Gou
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Search for more papers by this authorZhongshen Zhang
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Search for more papers by this authorGang Pan
Integrated Water-Energy-Food Facility (iWEF), School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire, NG25 0QF UK
Search for more papers by this authorCorresponding Author
Jing Zhang
National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Projecting a cost-effective and highly efficient electrocatalyst for the oxygen reaction reduction (ORR) counts a great deal for Zn-air batteries. Herein, a hierarchical core–shell ORR catalyst (Co2N/CoP@PNCNTs) is developed by embedding cobalt phosphides and/or cobalt nitrides as the core into N, P-doped carbon nanotubes (PNCNTs) as the shell via one-step carbonization, nitridation, and phosphorization of pyrolyzing Co-MOF precursor. The globally N, P-doped structure of Co2N/CoP@PNCNTs demonstrates an outstanding electrocatalytic activity in the alkaline solution with the onset and half-wave potentials of 1.07 and 0.85 V respectively. Moreover, a Zn-air battery assembled from Co2N/CoP@PNCNTs as the air cathode delivers an open circuit potential of 1.49 V, a maximum power density of 151.1 mW cm−2 and a specific capacity of 823.8 mAh kg−1. It is reflected that Co2N/CoP@PNCNTs provides a long-term durability with a slight decline of 15 h in the chronoamperometry measurement and an excellent charge–discharge stability with negligible voltage decay for 150 h at 10 mA cm−2 in Zn-air batteries. The results reveal that Co2N/CoP@PNCNTs has superiority over most Co-Nx-C or CoxP@C catalysts reported so far. The excellent catalytic properties and stability of Co2N/CoP@PNCNTs derive from synergistic effects between Co2N/CoP and mesoporous N, P-doped carbon nanotubes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202108094-sup-0001-SuppMat.pdf3.9 MB | Supporting Information |
smll202108094-sup-0002-VideoS1.mp44.5 MB | Supplemental Video 1 |
smll202108094-sup-0003-VideoS2.mp45.5 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. K. Debe, Nature 2012, 486, 43.
- 2L. An, Z. Y. Zhang, J. R. Feng, F. Lv, Y. X. Li, R. Wang, M. Lu, R. B. Gupta, P. X. Xi, S. Zhang, J. Am. Chem. Soc. 2018, 140, 17624.
- 3J. Yin, Y. X. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Y. Cheng, Y. F. Li, P. X. Xi, S. J. Guo, Adv. Mater. 2017, 29, 1704681.
- 4J. Yin, Y. X. Li, F. Lv, Q. H. Fan, Y. Q. Zhao, Q. L. Zhang, W. Wang, F. Y. Cheng, P. X. Xi, S. J. Guo, ACS Nano 2017, 11, 2275.
- 5X. H. Gao, H. X. Zhang, Q. G. Li, X. G. Yu, Z. L. Hong, X. W. Zhang, C. D. Liang, Z. Lin, Angew. Chem., Int. Ed. 2016, 55, 6290.
- 6T. P. Zhou, N. Zhang, C. Z. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 1132.
- 7X. W. Lv, W. S. Xu, W. W. Tian, H. Y. Wang, Z. Y. Yuan, Small 2021, 17, 2101856.
- 8J. Li, X. Gao, L. Zhu, M. N. Ghazzal, J. Zhang, C. H. Tung, L. Z. Wu, Energy Environ. Sci. 2020, 13, 1326.
- 9Y. Niu, M. L. Xiao, J. B. Zhu, T. T. Zeng, J. D. Li, W. Y. Zhang, D. Su, A. P. Yu, Z. W. Chen, J. Mater. Chem. A 2020, 8, 9177.
- 10C. F. Xia, Y. S. Zhou, C. H. He, A. I. Douka, W. Guo, K. Qi, B. Y. Xia, Small Sci. 2021, 1, 2100010.
- 11Y. Jiang, Y. P. Deng, J. Fu, D. U. Lee, R. L. Liang, Z. P. Cano, Y. S. Liu, Z. Y. Bai, S. Hwang, L. Yang, D. Su, W. G. Chu, Z. W. Chen, Adv. Energy Mater. 2018, 8, 1702900.
- 12Y. B. Li, C. Zhong, J. Liu, X. Q. Zeng, S. X. Qu, X. P. Han, Y. D. Deng, W. B. Hu, J. Lu, Adv. Mater. 2018, 30, 1703657.
- 13Z. P. Miao, Y. Xia, J. S. Liang, L. F. Xie, S. Q. Chen, S. Z. Li, H. L. Wang, S. Hu, J. T. Han, Q. Li, Small 2021, 17, 2100735.
- 14Z. T. Li, L. Q. Wei, W. J. Jiang, Z. P. Hu, H. Luo, W. N. Zhao, T. Xu, W. T. Wu, M. B. Wu, J. S. Hu, Appl. Catal., B 2019, 251, 240.
- 15Q. Yang, Y. Jia, F. F. Wei, L. Z. Zhuang, D. J. Yang, J. Z. Liu, X. Wang, S. Lin, P. Yuan, X. D. Yao, Angew. Chem., Int. Ed. 2020, 59, 6122.
- 16H. C. Yang, Y. J. Zhang, F. Hu, Q. B. Wang, Nano Lett. 2015, 15, 7616.
- 17P. Tan, B. Chen, H. R. Xu, W. Z. Cai, W. He, M. Ni, Appl. Catal., B 2019, 241, 104.
- 18I. S. Amiinu, X. B. Liu, Z. H. Pu, W. Q. Li, Q. D. Li, J. Zhang, H. L. Tang, H. N. Zhang, S. C. Mu, Adv. Funct. Mater. 2018, 28, 1704638.
- 19W. J. Liu, X. Hu, H. C. Li, H. Q. Yu, Small 2018, 14, 1801878.
- 20G. Y. Zhou, M. Li, Y. L. Li, H. Dong, D. M. Sun, X. E. Liu, L. Xu, Z. Q. Tian, Y. W. Tang, Adv. Funct. Mater. 2019, 30, 1905252.
- 21H. Li, X. L. Zhao, H. L. Liu, S. Chen, X. F. Yang, C. X. Lv, H. W. Zhang, X. L. She, D. J. Yang, Small 2018, 14, 1802824.
- 22D. X. Liu, B. Wang, H. G. Li, S. F. Huang, M. M. Liu, J. Wang, Q. J. Wang, J. J. Zhang, Y. F. Zhao, Nano Energy 2019, 58, 277.
- 23E. O. Eren, N. Özkan, Y. Devrim, Int. J. Hydrogen Energy 2020, 45, 33957.
- 24S. S. A. Shah, T. Najam, M. S. Javed, M. M. Rahman, P. Tsiakaras, ACS Appl. Mater. Interfaces 2021, 13, 23191.
- 25S. Yuan, L. L. Cui, Z. Y. Dou, X. Ge, X. Q. He, W. Zhang, T. Asefa, Small 2020, 16, 2000742.
- 26L. Du, L. L. Luo, Z. X. Feng, M. Engglhard, X. H. Xie, B. H. Han, J. M. Sun, J. H. Zhang, G. P. Yin, C. M. Wang, Y. Wang, Y. Y. Shao, Nano Energy 2017, 39, 245.
- 27K. N. Dinh, Q. H. Liang, C. F. Du, J. Zhao, A. I. Y. Tok, H. Mao, Q. Y. Yan, Nano Today 2019, 25, 99.
- 28H. Li, Q. Li, P. Wen, Williams, T. B., Adhikari, S., C. C. Dun, C. Lu, D. Itanze, L. Jiang, D. L. Carroll, G. L. Donati, P. M. Lundin, Y. J. Qiu, S. M. Geyer, Adv. Mater. 2018, 30, 1705796.
- 29Y. L. Dang, J. K. He, T. L. Wu, L. P. Yu, P. Kerns, L. Y. Wen, J. Ouyang, S. L. Suib, ACS Appl. Mater. Interfaces 2019, 11, 29879.
- 30X. M. Hu, S. L. Zhang, J. W. Sun, L. Yu, X. Y. Qian, R. D. Hu, Y. N. Wang, H. G. Zhao, J. W. Zhu, Nano Energy 2019, 56, 109.
- 31H. Li, Q. Li, P. Wen, T. B. Williams, S. Adhikari, C. Dun, C. Lu, D. Itanze, L. Jiang, D. L. Carroll, G. L. Donati, P. M. Lundin, Y. Qiu, S. M. Geyer, Adv. Mater. 2018, 30, 1705796.
- 32Y. Yan, Y. Y. Xu, B. Zhao, Y. Xu, Y. Gao, G. D. Chen, W. B. Wang, B. Y. Xia, J. Mater. Chem. A 2020, 8, 5070.
- 33X. W. Lv, J. T. Ren, Y. S. Wang, Y. P. Liu, Z. Y. Yuan, ACS Sustainable Chem. Eng. 2019, 7, 8993.
- 34Y. Li, Z. H. Dong, L. F. Jiao, Adv. Energy Mater. 2020, 10, 1902104.
- 35H. T. Liu, J. Y. Guan, S. X. Yang, Y. H. Yu, R. Shao, Z. P. Zhang, M. L. Dou, F. Wang, Q. Xu, Adv. Mater. 2020, 32, 2003649.
- 36Q. Shi, Q. Liu, Y. P. Zheng, Y. Q. Dong, L. Wang, H. T. Liu, W. Y. Yang, Energy Environ. Mater. 2021.
- 37G. C. Philip, S. A. Michael, A. Phaedon, Science 2001, 292, 706.
- 38G. W. Zhang, B. Wang, J. L. Bi, D. Q. Fang, S. C. Yang, J. Mater. Chem. A 2019, 7, 5769.
- 39L. L. Zou, C. C. Hou, Z. Liu, H. Pang, Q. Xu, J. Am. Chem. Soc. 2018, 140, 15393.
- 40D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987.
- 41M. Y. Tan, Y. Y. Xiao, W. H. Xi, X. F. Lin, B. F. Gao, Y. L. Chen, Y. Zheng, B. Z. Lin, J. Power Sources 2021, 490, 229570.
- 42F. Z. Song, W. Li, J. Q. Yang, G. Q. Han, T. Yan, X. Liu, Y. Rao, P. L. Liao, Z. Cao, Y. J. Sun, ACS Energy Lett. 2019, 4, 1594.
- 43X. L. Ge, Z. Q. Li, L. W. Yin, Nano Energy 2017, 32, 117.
- 44R. Zhang, C. Tang, R. M. Kong, G. Du, Asiri, A. M., L. Chen, X. P. Sun, Nanoscale 2017, 9, 4793.
- 45T. Chen, J. Ma, S. Y. Chen, Y. M. Wei, C. S. Deng, J. C. Chen, J. Q. Hu, W. P. Ding, Chem. Eng. J. 2021, 415, 129031.
- 46X. L. Wu, G. S. Han, H. Wen, Y. Y. Liu, L. Han, X. Y. Cui, J. J. Kou, B. J. Li, J. C. Jiang, Energy Environ. Mater. 2021.
- 47J. G. Zheng, A. N. Xu, A. J. Wu, X. D. Li, ACS Appl. Mater. Interfaces 2021, 13, 21231.
- 48Y. Pan, K. A. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen, Y. D. Li, J. Am. Chem. Soc. 2018, 140, 2610.
- 49Q. Ke, L. Yang, Y. B. Gao, X. L. Wu, F. Chen, S. J. Liu, H. J. Lin, C. Z. Yuan, J. R. Chen, Nanotechnology 2020, 31, 165401.
- 50E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Angew. Chem., Int. Ed. 2014, 53, 5427.
- 51D. Yoon, D. H. Kim, K. Y. Chung, W. Y. Chang, S. M. Kim, J. Kim, Carbon 2016, 98, 213.
- 52J. H. Zhang, Q. H. Kong, D. Y. Wang, J. Mater. Chem. A 2018, 6, 6376.
- 53Y. Zhang, Q. Sun, K. S. Xia, B. Han, C. G. Zhou, Q. Gao, H. Q. Wang, S. Pu, J. P. Wu, ACS Sustainable Chem. Eng. 2019, 7, 5717.
- 54M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, S. H. Yu, ACS Nano 2014, 8, 3970.
- 55J. Bai, B. J. Xi, H. Z. Mao, Y. Lin, X. J. Ma, J. K. Feng, S. Xiong, Adv. Mater. 2018, 30, 1802310.
- 56Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, Jaroniec Mietek, S. Z. Qiao, ACS Nano 2014, 85, 5290.
- 57Y. Y. Guo, P. F. Yuan, J. N. Zhang, H. C. Xia, F. Y. Cheng, M. F. Zhou, J. Li, Y. Y. Qiao, S. C. Mu, Q. Xu, Adv. Funct. Mater. 2018, 28, 1805641.
- 58Z. G. Zhu, Q. Q. Xu, Z. T. Ni, K. F. Luo, Y. Y. Liu, D. S. Yuan, ACS Sustainable Chem. Eng. 2021, 9, 13491.
- 59T. Ikeda, M. Boero, S. F. Huang, K. Terakura, M. Oshima, J. Ozak, J. Phys. Chem. C 2008, 112, 14706.
- 60H. W. Liang, X. D. Zhuang, S. Brüller, X. L. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973.
- 61D. R. Liyanage, S. J. Danforth, Y. Liu, M. E. Bussell, S. L. Brock, Chem. Mater. 2015, 27, 4349.
- 62R. Jin, X. Li, Y. Sun, H. Shan, L. Fan, D. Li, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 14641.
- 63Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun, Angew. Chem., Int. Ed. 2014, 53, 6710.
- 64L. Hu, F. Wang, M. S. Balogun, Y. Tong, J. Mater. Sci. Technol. 2020, 55, 203.
- 65S. Chen, Y. Zheng, B. Zhang, Y. Y. Feng, J. X. Zhu, J. S. Xu, C. Zhang, W. Feng, T. X. Liu, ACS Appl. Mater. Interfaces 2019, 11, 1384.
- 66D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, J. Mater. Chem. A 2013, 1, 14868.
- 67Z. Y. Wang, Y. F. Dong, H. J. Li, Z. B. Zhao, H. B. Wu, C. Hao, S. H. Liu, J. S. Qiu, X. W. Lou, Nat. Commun. 2014, 5, 5002.
- 68Q. N. Liu, Z. Hu, Y. R. Liang, L. Li, C. Zou, H. L. Jin, S. Wang, H. M. Lu, Q. F. Gu, S. L. Chou, Y. Liu, S. X. Dou, Angew. Chem., Int. Ed. 2020, 59, 5159.
- 69K. Wang, J. P. Liu, Z. H. Tang, L. G. Li, Z. Wang, M. Zubair, F. Ciucci, L. Thomsen, J. Wright, N. M. Bedford, J. Mater. Chem. A 2021, 9, 13044.
- 70D. Wang, P. X. Yang, H. Xu, J. Y. Ma, L. Du, G. X. Zhang, R. P. Li, Z. Jiang, Y. Li, J. Q. Zhang, M. Z. An, J. Power Sources 2021, 485, 229339.
- 71J. C. Gao, J. M. Wang, L. J. Zhou, X. Y. Cai, D. Zhan, M. Z. Hou, L. F. Lai, ACS Appl. Mater. Interfaces 2019, 11, 10364.
- 72F. Wan, L. L. Zhang, X. Dai, X. Y. Wang, Z. Q. Niu, J. Chen, Nat. Commun. 2018, 9, 1656.
- 73F. Y. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172.
- 74H. Cheng, K. Xu, L. L. Xing, S. Liu, Y. Gong, L. Gu, L. D. Zhang, C. Z. Wu, J. Mater. Chem. A 2016, 4, 11775.
- 75S. H. Ahn, A. Manthiram, Small 2017, 13, 1702068.