3D Printed High Performance Silver Mesh for Transparent Glass Heaters through Liquid Sacrificial Substrate Electric-Field-Driven Jet
Hongke Li
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorZhenghao Li
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorNa Li
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorCorresponding Author
Xiaoyang Zhu
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorYuan-Fang Zhang
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 China
Search for more papers by this authorLuanfa Sun
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorRui Wang
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorJinbao Zhang
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorZhongming Yang
School of Information Science & Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, 266237 China
Search for more papers by this authorHao Yi
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Xiaofeng Xu
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Hongbo Lan
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorHongke Li
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorZhenghao Li
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorNa Li
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorCorresponding Author
Xiaoyang Zhu
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorYuan-Fang Zhang
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442 China
Search for more papers by this authorLuanfa Sun
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorRui Wang
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorJinbao Zhang
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
Search for more papers by this authorZhongming Yang
School of Information Science & Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, 266237 China
Search for more papers by this authorHao Yi
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Xiaofeng Xu
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Hongbo Lan
Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520 China
Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Transparent glass with metal mesh is considered a promising strategy for high performance transparent glass heaters (TGHs). However, the realization of simple, low-cost manufacture of high performance TGHs still faces great challenges. Here, a technique for the fabrication of high performance TGHs is proposed using liquid sacrificial substrate electric-field-driven (LS-EFD) microscale 3D printing of thick film silver paste. The liquid sacrificial substrate not only significantly improves the aspect ratio (AR) of silver mesh, but also plays a positive role in printing stability. The fabricated TGHs with a line width of 35 µm, thickness of 12.3 µm, and pitch of 1000 µm exhibit a desirable optoelectronic performance with sheet resistance (Rs) of 0.195 Ω sq−1 and transmittance (T) of 88.97%. A successful deicing test showcases the feasibility and practicality of the manufactured TGHs. Moreover, an interface evaporator is developed for the coordination of photothermal and electrothermal systems based on the high performance TGHs. The vapor generation rate of the device reaches 10.69 kg m−2 h−1 with a voltage of 2 V. The proposed technique is a promising strategy for the cost-effective and simple fabrication of high performance TGHs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202107811-sup-0001-SuppMat.pdf845 KB | Supporting Information |
smll202107811-sup-0002-MovieS1.mp43.3 MB | Supplemental Movie 1 |
smll202107811-sup-0003-MovieS2.mp43.3 MB | Supplemental Movie 2 |
smll202107811-sup-0004-MovieS3.mp417.6 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. T. Papanastasiou, A. Schultheiss, D. Muñoz-Rojas, C. Celle, A. Carella, J. P. Simonato, D. Bellet, Adv. Funct. Mater. 2020, 30, 1910225.
- 2S. Long, X. Cao, G. Sun, N. Li, T. Chang, Z. Shao, P. Jin, Appl. Surf. Sci. 2018, 441, 764.
- 3R. Gupta, S. Walia, M. Hösel, J. Jensen, D. Angmo, F. C. Krebs, G. U. Kulkarni, J. Mater. Chem. A 2014, 2, 10930.
- 4K. Kim, Y. G. Park, B. G. Hyun, M. Choi, J. U. J. Park, Adv. Mater. 2019, 31, 1804690.
- 5K. Im, K. Cho, J. Kim, S. Kim, Thin Solid Films 2010, 518, 3960.
- 6R. Gupta, K. D. M. Rao, S. Kiruthika, G. U. Kulkarni, ACS Appl. Mater. Interfaces 2016, 8, 12559.
- 7K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, J. Mizuno, Sci. Rep. 2018, 8, 2825.
- 8D. Janas, K. K. Koziol, Nanoscale 2014, 6, 3037.
- 9I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky, J. Xi, J. Byeon, H. M. Lee, M. Choi, Adv. Energy Mater. 2019, 9, 1901204.
- 10J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, B. H. Hong, Nano Lett. 2011, 11, 5154.
- 11D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, Y. Chen, Small 2011, 7, 3186.
- 12Y. Ma, L. Zhi, Small Methods 2019, 3, 1800199.
- 13S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Adv. Mater. 2014, 26, 6670.
- 14Y. Lee, S. Y. Min, T. S. Kim, S. H. Jeong, J. Y. Won, H. Kim, W. Xu, J. K. Jeong, T. W. Lee, Adv. Mater. 2016, 28, 9109.
- 15T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. P. Simonato, D. Bellet, Smal. 2016, 12, 6052.
- 16J. Y. Tseng, L. Lee, Y. C. Huang, J. H. Chang, T. Y. Su, Y. C. Shih, H. W. Lin, Y. L. Chueh, Small 2018, 14, 1800541.
- 17Y. Yang, H. Deng, Q. Fu, Mater. Chem. Front. 2020, 4, 3130.
- 18M. N. Gueye, A. Carella, R. Demadrille, J.-P. Simonato, ACS Appl. Mater. Interfaces 2017, 9, 27250.
- 19H. Shi, C. Liu, Q. Jiang, J. Xu, Adv. Electron. Mater. 2015, 1, 1500017.
- 20R. Chen, K. Sun, Q. Zhang, Y. Zhou, M. Li, Y. Sun, Z. Wu, Y. Wu, X. Li, J. Xi, Iscience 2019, 12, 66.
- 21J. Linnet, A. R. Walther, C. Wolff, O. Albrektsen, N. A. Mortensen, J. Kjelstrup-Hansen, Opt. Mater. Express. 2018, 8, 1733.
- 22S. Eckhardt, M. Siebold, A. F. Lasagni, Opt. Express 2016, 24, A553.
- 23S. Walia, I. Mondal, G. U. Kulkarni, ACS Appl. Energy Mater. 2019, 1, 1597.
- 24T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, L. Zhi, Carbon 2015, 81, 232.
- 25D. Lordan, M. Burke, M. Manning, A. Martin, A. Amann, D. O'Connell, R. Murphy, C. Lyons, A. J. Quinn, ACS Appl. Mater. Interfaces 2017, 9, 4932.
- 26W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, Adv. Mater. 2013, 25, 4006.
- 27K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn, T. Riedl, Adv. Funct. Mater. 2014, 24, 1671.
- 28Y. Jin, L. Li, Y. Cheng, L. Kong, Q. Pei, F. Xiao, Adv. Funct. Mater. 2015, 25, 1581.
- 29S. Kang, S. Cho, R. Shanker, H. Lee, J. Park, D. S. Um, Y. Lee, H. Ko, Sci. Adv. 2018, 4, eaas8772.
- 30R. V. Babu, J. M. Fernandes, M. Kovendhan, N. Purushothamreddy, R. Muniramaiah, R. Arockiakumar, N. S. Karthiselva, D. P. Joseph, Physica B: Condens. Matter. 2021, 607, 412690.
- 31A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang, J. Tang, L. J. Guo, W. D. Li, Small 2016, 12, 3021.
- 32X. Zhu, M. Liu, X. Qi, H. Li, Y. F. Zhang, Z. Li, Z. Peng, J. Yang, L. Qian, Q. Xu, N. Gou, J. He, D. Li, H. Lan, Adv. Mater. 2021, 33, 2007772.
- 33J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, D. Poulikakos, Adv. Funct. Mater. 2016, 26, 833.
- 34X. Chen, S. Nie, W. Guo, F. Fei, W. Su, W. Gu, Z. Cui, Adv. Electron. Mater. 2019, 5, 1800991.
- 35C. P. Muzzillo, M. O. Reese, L. M. Mansfield, Langmuir 2020, 36, 4630.
- 36E. Vaněčková, M. Bouša, R. Sokolová, P. Moreno-García, P. Broekmann, V. Shestivska, J. Rathouský, M. Gál, T. Sebechlebská, V. Kolivoška, J. Eelectroanal. Chem. 2020, 858, 113763.
- 37L. Zhao, S. Yu, X. Li, X. Li, M. Wu, L. Li, Org. Electron. 2020, 82, 105511.
- 38Y. Han, H. Zhong, N. Liu, Y. Liu, J. Lin, P. Jin, Adv. Electron. Mater. 2018, 4, 1800156.
- 39C. Gui, X. Ding, S. Zhou, Y. Gao, X. Liu, S. Liu, Opt. Laser Technol. 2018, 104, 112.
- 40S. Li, Y. Wang, B. Li, L.i. Huang, N. Ren, Opt. Commun. 2021, 483, 126661.
- 41Y. Liu, J. Xu, S. Shen, X. Cai, L. Chen, S. Wang, J. Mater. Chem. A 2017, 5, 9032.
- 42C. Zhu, R. Tan, W. Song, O. Bang, M. Cai, S. Zhou, Y. Lu, N. Li, Mater. Res. Express 2018, 5, 066427.
- 43A. S. Voronin, M. M. Simunin, Y.u. V. Fadeev, F. S. Ivanchenko, D. V. Karpova, I. A. Tambasov, S. V. Kharto, Tech. Phys Lett. 2019, 45, 366.
- 44S. Kiruthika, R. Gupta, G. U. Kulkarni, RSC Adv. 2014, 4, 49745.
- 45W. S. Cheong, Y. H. Kim, L. J. Mee, C. H. Hong, H. Y. Choi, Y. J. Kwak, Y. J. Kim, Y. S. Kim, Adv. Mater. Technol. 2019, 4, 1800550.
- 46R. Gupta, K. D. M. Rao, K. Srivastava, A. Kumar, S. Kiruthika, G. U. Kulkarn, ACS Appl. Mater. Interfaces 2014, 6, 13688.
- 47K. D. M. Rao, R. Gupta, G. U. Kulkarni, Adv. Mater. Interfaces 2014, 1, 1400090.
- 48K. D. M. Rao, G. U. Kulkarni, Nanoscale 2014, 6, 5645.
- 49L. Liu, Z. Shen, X. Zhang, H. Ma, J. Colloid Interface Sci. 2021, 582, 12.
- 50W. Li, S. Yang, A. Shamim, NPJ Flex Electron. 2019, 3, 13.
- 51B. Zhang, H. Lee, D. Byun, Adv. Eng. Mater. 2020, 22, 1901275.
- 52X. Wu, S. Wang, Z. Luo, J. Lu, K. Lin, H. Xie, Y. Wang, J. Li, Nanomaterials 2021, 11, 1571.
- 53H. Ling, R. Chen, Q. Huang, F. Shen, Y. Wang, X. Wang, Green Chem. 2020, 22, 3208.
- 54N. J. Wilkinson, M. A. A. Smith, R. W. Kay, R. A. Harris, Int. J. Adv. Manuf. Tech. 2019, 105, 4599.
- 55Y. Liu, J. Xu, S. Shen, X. Cai, L. Chen, S. Wang, J. Appl. Phys. 2018, 123, 174905.
- 56X. Zhu, Q. Xu, H. Li, M. Liu, Z. Li, K. Yang, J. Zhao, L. Qian, Z. Peng, G. Zhang, J. Yang, F. Wang, D. Li, H. Lan, Adv. Mater. 2019, 31, 1902479.
- 57X. Zhu, Z. Li, Y. Hu, H. Li, J. Yang, H. Lan, Opt. Laser Technol. 2020, 123, 105943.
- 58Y. F. Zhang, Z. Li, H. Li, H. Li, Y. Xiong, X. Zhu, H. Lan, Q. Ge, ACS Appl. Mater. Inter. 2021, 13, 41414.
- 59H. Zhang, T. Qi, X. Zhu, L. Zhou, Z. Li, Y. Zhang, W. Yang, J. Yang, Z. Peng, G. Zhang, F. Wang, P. Guo, H. Lan, ACS Appl. Mater. Interfaces 2021, 13, 36295.
- 60Z. Wang, G. Zhang, H. Huang, L. Qian, X. Liu, H. Lan, Virtual Phys. Prototyping 2021, 16, 113.
- 61C. Chang, K. Limkrailassiri, L. Lin, Appl. Phys. Lett. 2008, 93, 123111.
- 62D. Sun, C. Chang, S. Li, L. Lin, Nano Lett. 2006, 6, 839.
- 63T. T. T. Can, T. C. Nguyen, W. S. Choi, Sci. Rep. 2019, 9, 9180.
- 64S. Sorel, D. Bellet, J. N. Coleman, ACS Nano 2014, 8, 4805.
- 65B. J. Lee, G. H. Jeong, Curr. Appl. Phys. Lett. 2012, 12, S113.
- 66Y. Zhu, Z. Sun, Z. Yan, Z. Jin, J. M. Tour, ACS Nano 2011, 5, 6472.
- 67A. G. Ricciardulli, S. Yang, G. J. A. Wetzelaer, X. Feng, P. W. Blom, Adv. Funct. Mater. 2018, 28, 1706010.
- 68D. Jung, D. Kim, K. H. Lee, L. J. Overzet, G. S. Lee, Sens. Actuators, A 2013, 199, 176.
- 69H. S. Jang, S. K. Jeon, S. H. Nahm, Carbon 2011, 49, 111.
- 70G. Kim, J. W. Lim, C. Yeon, T. Kim, H. C. Lee, S. J. Yun, J. Alloys Compd. 2019, 774, 1092.
- 71A. Y. Kim, K. Lee, J. Park, D. Byun, J. K. Lee, Phys. Status Solidi A 2014, 211, 1923.
- 72D. S. Y. Jayathilake, J. S. Sagu, K. G. U. Wijayantha, Mater. Lett. 2019, 237, 249.
- 73M. Wu, H. Zheng, X. Li, S. Yu, Ceram. Int. 2020, 46, 4344.
- 74K. Im, K. Cho, K. Kwak, J. Kim, S. Kim, J. Nanosci. Nanotechnol. 2013, 13, 3519.
- 75C. Kim, J. W. Park, J. Kim, S. J. Hong, M. J. Lee, J. A. Compd. 2017, 726, 712.
- 76X. Li, S. Yu, L. Zhao, M. Wu, H. Dong, J. Mater. Sci. 2020, 31, 8106.
- 77S. Yu, Z. Liu, L. Zhao, B. Gong, Opt. Mater. 2021, 119, 111301.
- 78A. R. Rathmell, B. J. Wiley, Adv. Mater. 2011, 23, 4798.
- 79Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, Langmuir 2018, 34, 3884.
- 80T. Cheng, Y. Z. Zhang, W. Y. Lai, Y. Chen, W. J. Zeng, W. Huang, J. Mater. Chem. C 2014, 2, 10369.
- 81S. Yu, X. Ma, X. Li, J. Li, B. Gong, X. Wang, Opt. Mater. 2021, 120, 111414.
- 82W. Lan, Y. Chen, Z. Yang, W. Han, J. Zhou, Y. Zhang, J. Wang, G. Tang, Y. Wei, W. Dou, ACS Appl. Mater. Interfaces 2017, 9, 6644.
- 83X. Yan, X. Li, L. Zhou, X. Chu, F. Yang, Y. Chi, X. Yang, Mater. Res. Express 2019, 6, 116316.
- 84Y. Jang, J. Kim, D. Byun, J. Phys. D 2013, 46, 155103.
- 85C. Hudaya, B. J. Jeon, J. K. Lee, ACS Appl. Mater. Interfaces 2015, 7, 57.
- 86S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Small 2014, 10, 4951.
- 87X. Zhao, L. M. Peng, C. Y. Tang, J. H. Pu, X. J. Zha, K. Ke, R. Y. Bao, M. B. Yang, W. Yang, Mater. Horiz. 2020, 7, 855.
- 88Y. Guo, Y. Sui, J. Zhang, Z. Cai, B. Xu, J. Mater. Chem. A 2020, 8, 25178.
- 89L. Li, J. Zhang, Nano Energy 2021, 81, 105682.
- 90N. Xu, P. Zhu, Y. Sheng, L. Zhou, X. Li, H. Tan, S. Zhu, J. Zhu, Joule 2020, 4, 347.
- 91Q. Ji, N. Li, S. Wang, S. Li, F. Li, L. Yu, P. Murto, X. Xu, J. Mater. Chem. A 2021, 9, 21197.