Understanding the Effect of Second Metal on CoM (M = Ni, Cu, Zn) Metal–Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction
Jie Wu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorZhenjiang Yu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYuanyuan Zhang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorSiqi Niu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorJianying Zhao
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Siwei Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ping Xu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorJie Wu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorZhenjiang Yu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYuanyuan Zhang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorSiqi Niu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorJianying Zhao
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Siwei Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ping Xu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Co-based bimetallic metal–organic frameworks (MOFs) have emerged as a kind of promising electrocatalyst for oxygen evolution reaction (OER). However, most of present works for Co-based bimetallic MOFs are still in try-and-wrong stage, while the OER performance trend and the underlying structure-function relationship remain unclear. To address this challenge, Co-based MOFs on carbon cloth (CC) (CoM MOFs/CC, M = Zn, Ni, and Cu) are prepared through a room-temperature method, and their structure and OER performance are compared systematically. Based on the results of overpotential and Tafel slope, the order of OER activity is ordered in the decreasing sequence: CoZn MOF > CoNi MOF > CoCu MOF > Co MOF. Spectroscopic studies clearly show that the better OER performance of CoM MOFs results from the higher oxidation state of Co, which is related to the choice of second metal. Theoretical calculations indicate that CoZn MOFs possess strengthened adsorption for O-containing intermediate, and lower energy barrier towards OER. This study figures out the effect of second metal on the OER performance of Co-based bimetallic MOFs and suggests that tuning the electronic structure of the metal site can be an effective strategy for other MOFs-based OER catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202105150-sup-0001-SuppMat.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Xu, P. Zhai, Y. Deng, J. Xie, X. Liu, S. Wang, D. Ma, Angew. Chem., Int. Ed. 2020, 59, 21736.
- 2K. Larmier, W. C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. C. Vives, C. Coperet, Angew. Chem., Int. Ed. 2017, 56, 2318.
- 3S. Wang, K. Zhang, H. Li, L. P. Xiao, G. Song, Nat. Commun. 2021, 12, 416.
- 4Z. Liu, X. Wang, Z. Wu, S. Yang, S. Yang, S. Chen, X. Wu, X. Chang, P. Yang, J. Zheng, X. Li, Nano Res. 2020, 13, 3157.
- 5X. Zhao, X. Kong, Z. Liu, Z. Li, Z. Xie, Z. Wu, F. He, X. Chang, P. Yang, J. Zheng, X. Li, Nano Today 2021, 40, 101245.
- 6H. F. Wang, Q. Xu, Matter 2019, 1, 565.
- 7J. Hou, Y. Sun, Y. Wu, S. Cao, L. Sun, Adv. Funct. Mater. 2018, 28, 1704447.
- 8Y. Wang, L. Chen, X. Yu, Y. Wang, G. Zheng, Adv. Energy Mater. 2017, 7, 1601390.
- 9T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765.
- 10Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen, A. Li, J. Zhao, Y. Xiong, Y. Wu, Y. Gong, T. Yao, W. Liu, L. Zheng, J. Dong, Y. Wang, Z. Zhuang, W. Xing, C. T. He, C. Peng, W. C. Cheng, Q. Li, M. Zhang, Z. Chen, N. Fu, X. Gao, W. Zhu, J. Wan, J. Zhang, L. Gu, S. Wei, P. Hu, J. Luo, J. Li, C. Chen, Q. Peng, X. Duan, Y. Huang, X. M. Chen, D. Wang, Y. Li, Nat. Chem. 2020, 12, 764.
- 11J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 2021, 143, 5201.
- 12C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu, Y. Xia, C. Yuan, B. Yang, Z. Li, X. Zhang, L. Lei, J. Abbott, Y. Zhong, X. Xia, G. Wu, Q. He, Y. Hou, Adv. Energy Mater. 2018, 8, 1801912.
- 13K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu, Y. Hou, Nano Energy 2020, 77, 105162.
- 14Y. Li, T. Zhao, M. Lu, Y. Wu, Y. Xie, H. Xu, J. Gao, J. Yao, G. Qian, Q. Zhang, Small 2019, 15, e1901940.
- 15Z. Tang, S. Zhao, Y. Yang, Angew. Chem., Int. Ed. 2021, https://doi.org/10.1002/ange.202110186.
- 16Y. Yang, Y. Yang, Z. Pei, K. H. Wu, C. Tan, H. Wang, L. Wei, A. Mahmood, C. Yan, J. Dong, S. Zhao, Y. Chen, Matter 2020, 3, 1442.
- 17S. Li, P. Ren, C. Yang, X. Liu, Z. Yin, W. Li, H. Yang, J. Li, X. Wang, Y. Wang, R. Cao, L. Lin, S. Yao, X. Wen, D. Ma, Sci. Bull. 2018, 63, 1358.
- 18R. Luo, Z. Qian, L. Xing, C. Du, G. Yin, S. Zhao, L. Du, Adv. Funct. Mater. 2021, 31, 2102918.
- 19W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy 2019, 4, 115.
- 20Q. Ji, Y. Kong, C. Wang, H. Tan, H. Duan, W. Hu, G. Li, Y. Lu, N. Li, Y. Wang, J. Tian, Z. Qi, Z. Sun, F. Hu, W. Yan, ACS Catal.. 2020, 10, 5691.
- 21F. L. Li, P. T. Wang, X. Q. Huang, D. J. Young, H. F. Wang, P. Braunstein, J. P. Lang, Angew. Chem., Int. Ed. 2019, 131, 7125.
- 22Y. Li, M. Lu, Y. Wu, Q. Ji, H. Xu, J. Gao, G. Qian, Q. Zhang, J. Mater. Chem. A 2020, 8, 18215.
- 23Y. Yang, Y. Yang, Y. Liu, S. Zhao, Z. Tang, Small Sci. 2021, 1, 2100015.
- 24S. G. Tarrino, J. L. O. Sariego, J. J. Calvente, M. Palomino, G. M. Espallargas, J. L. Jorda, F. Rey, P. O. Burgos, ACS Appl. Mater. Interfaces 2019, 11, 46658.
- 25Y. Wu, Y. Li, J. Gao, Q. Zhang, SusMat 2021, 1, 66.
- 26S. S. K. Ge, Y. Zhao, K. Yang, S. Wang, Z. H. Zhang, J. Y. Cao, Y. Z. Yang, M. Pan, L. Zhu, Angew. Chem., Int. Ed. 2021, 60, 12097.
- 27J. Cui, J. Liu, C. Wang, F. Rong, L. He, Y. Song, Z. Zhang, S. Fang, Electrochim. Acta 2020, 334, 135577.
- 28Z. Xu, C. L. Yeh, Y. Jiang, X. Yun, C. T. Li, K. C. Ho, J. T. Lin, R. Y. Lin, ACS Appl. Mater. Interfaces 2021, 13, 28242.
- 29Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H. P. Wang, Y. Fan, Z. W. Wei, Z. Zhang, Z. Ke, G. Li, C. Y. Su, Adv. Energy Mater. 2018, 8, 1801564.
- 30X. Zhang, J. Luo, K. Wan, D. Plessers, B. Sels, J. Song, L. Chen, T. Zhang, P. Tang, J. R. Morante, J. Arbiol, J. Fransaer, J. Mater. Chem. A 2019, 7, 1616.
- 31S. Zhao, C. Tan, C. T. He, P. An, F. Xie, S. Jiang, Y. Zhu, K. H. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong, Z. Tang, Nat. Energy 2020, 5, 881.
- 32L. Zhuang, L. Ge, H. Liu, Z. Jiang, Y. Jia, Z. Li, D. Yang, R. K. Hocking, M. Li, L. Zhang, X. Wang, X. Yao, Z. Zhu, Angew. Chem., Int. Ed. 2019, 58, 13565.
- 33J. Li, S. Gadipelli, Chem. - Eur. J. 2020, 26, 14167.
- 34W. Zhou, D. D. Huang, Y. P. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. Sun, P. Feng, X. Bu, Angew. Chem., Int. Ed. 2019, 58, 4227.
- 35X. Liu, C. Guan, Y. Hu, L. Zhang, A. M. Elshahawy, J. Wang, Small 2018, 14, e1702641.
- 36Y. Li, Z. Wang, J. Hu, S. Li, Y. Du, X. Han, P. Xu, Adv. Funct. Mater. 2020, 30, 1910498.
- 37K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, J. Mater. Chem. A 2017, 5, 952.
- 38C. Hu, J. Xu, Y. Wang, M. Wei, Z. Lu, C. Cao, J. Mater. Sci. 2020, 55, 16360.
- 39J. Qin, S. Wang, X. Wang, Appl. Catal. B 2017, 209, 476.
- 40W. Zheng, M. Liu, L. Y. S. Lee, ACS Catal. 2019, 10, 81.
- 41Z. Chen, M. Liu, R. Wu, J. Catal. 2018, 361, 322.
- 42X. Guo, Z. Liu, F. Liu, J. Zhang, L. Zheng, Y. Hu, J. Mao, H. Liu, Y. Xue, C. Tang, Catal. Sci. Technol. 2020, 10, 1056.
- 43Z. L. Liu, B. X Sun, P. P. Yang, J. Zheng, X. G. Li, Angew. Chem., Int. Ed. 2020, 59, 1975.
- 44W. X. Li, W. Fang, C. Wu, K. N. Dinh, H. Ren, L. Zhao, C. T. Liu, Q. Y. Yan, J. Mater. Chem. A 2020, 8, 3658.
- 45C. Wu, X. Zhang, H. Li, Z. Xia, S. Yu, S. Wang, G. Sun, Chin. J. Catal. 2021, 42, 637.
- 46J. Zhou, Z. Han, X. Wang, H. Gai, Z. Chen, T. Guo, X. Hou, L. Xu, X. Hu, M. Huang, S. V. Levchenko, H. Jiang, Adv. Funct. Mater. 2021, 2102066.
- 47C. Wang, L. Qi, Angew. Chem., Int. Ed. 2020, 59, 17219.
- 48F. Zhang, S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, W. K. Lee, Y. Yao, J. Deng, T. Liu, Y. Tang, G. Yin, J. Lu, D. Su, J. Wang, Nat. Commun. 2020, 11, 3050.
- 49D. Bazin, I. Kovács, L. Guczi, P. Parent, C. Laffon, F. D. Groot, O. Ducreux, J. Lynch, J. Catal. 2000, 189, 456.
- 50F. Massel, S. Ahmadi, M. Hahlin, Y. S. Liu, J. H. Guo, T. Edvinsson, H. Rensmo, L. C. Duda, J. Electron Spectrosc. Relat. Phenom. 2018, 224, 3.
- 51S. Niu, S. Li, Y. Du, X. Han, P. Xu, ACS Energy Lett.. 2020, 5, 1083.
- 52S. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem. A 2019, 7, 18674.
- 53K. Zhang, R. Zou, Small 2021, 17, e2100129.
- 54Y. Zhang, Y. Qiu, X. Ji, T. Ma, Z. Ma, P. A. Hu, ChemSusChem 2019, 12, 3792.
- 55Y. Shi, W. Du, W. Zhou, C. Wang, S. Lu, B. Zhang, Angew. Chem., Int. Ed. 2020, 59, 22470.
- 56M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. K. Norskov, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 13521.
- 57B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Adv. Funct. Mater. 2018, 28, 1706008.
- 58S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal. 2020, 10, 9086.
- 59S. Niu, X. P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao, P. Xu, Appl. Catal. B 2021, 297, 120442.