Interfacial Assembly of Nanowire Arrays toward Carbonaceous Mesoporous Nanorods and Superstructures
Lei Xie
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorJinrong Liu
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorXiaobing Bao
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorJiadong Chen
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorXiaozhong Zheng
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorYanjun He
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorWei Zhang
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorJie Zeng
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Yong Wang
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Biao Kong
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorLei Xie
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorJinrong Liu
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorXiaobing Bao
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorJiadong Chen
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorXiaozhong Zheng
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
Search for more papers by this authorYanjun He
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorWei Zhang
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorJie Zeng
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Yong Wang
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Biao Kong
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Synthesis of anisotropic carbonaceous nano- and micro-materials with well-ordered mesoporous structures has attracted increasing attention for a broad scope of applications. Although hard-templating method has been widely employed, overcoming the viscous forces to prepare anisotropic mesoporous materials is particularly challenging via the universal soft-templating method, especially from sustainable biomass as a carbon resource. Herein, the synthesis of biomass-derived nanowire-arrays based mesoporous nanorods and teeth-like superstructures is reported, through a simple and straightforward polyelectrolyte assisted soft-templating hydrothermal carbonization (HTC) approach. A surface energy induced interfacial assembly mechanism with the synergetic interactions between micelles, nanowire, nanorods, and polyelectrolyte is proposed. The polyelectrolyte acts not only as a stabilizer to decrease the surface energy of cylindrical micelles, nanowires and nanorods, but also as a structure-directing agent to regulate the oriented attachment and anisotropic assembly of micelles, nanowires, and nanorods. After a calcination treatment, the carbon nanorod and teeth-like superstructure are successfully coupled with Ru to directly produce supported catalysts for the hydrogen evolution reaction, exhibiting much better performance than the isotropic nanospheres based catalyst. This HTC approach will open up new avenues for the synthesis of anisotropic materials with various morphologies and dimensions, expanding the palette of materials selection for many applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104477-sup-0001-SuppMat.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. M. Kaczmarek, K. Van Hecke, R. Van Deun, Chem. Soc. Rev. 2015, 44, 2032; b) T. Bollhorst, K. Rezwan, M. Maas, Chem. Soc. Rev. 2017, 46, 2091; c) Q. Cao, Q. Fan, Q. Chen, C. Liu, X. Han, L. Li, Mater. Horiz. 2020, 7, 638; d) X. X. Wang, W. Q. Cao, M. S. Cao, J. Yuan, Adv. Mater. 2020, 32, 2002112.
- 2a) K. C. Meyer, E. N. Coker, D. S. Bolintineanu, B. Kaehr, J. Am. Chem. Soc. 2014, 136, 13138; b) K. Kim, J. Guo, Z. Liang, D. Fan, Adv. Funct. Mater. 2018, 28, 1705867; c) L. Xie, X. Li, J. Deng, Y. Gong, H. Wang, S. Mao, Y. Wang, Green Chem. 2018, 20, 4596.
- 3a) B. Liu, Y. Wu, S. Zhao, Chem. - Eur. J. 2018, 24, 10562; b) A. Walther, A. H. Muller, Chem. Rev. 2013, 113, 5194; c) X. Li, L. Zhou, Y. Wei, A. M. El-Toni, F. Zhang, D. Zhao, J. Am. Chem. Soc. 2015, 137, 5903; d) Z. Lin, J. Sun, Y. Zhou, Y. Wang, H. Xu, X. Yang, H. Su, H. Cui, T. Aida, W. Zhang, S. Z. D. Cheng, J. Am. Chem. Soc. 2017, 139, 5883; e) C. Chen, H. Wang, C. Han, J. Deng, J. Wang, M. Li, M. Tang, H. Jin, Y. Wang, J. Am. Chem. Soc. 2017, 139, 2657; f) A. J. P. Houben, P. K. Bijl, J. Pross, S. M. Bohaty, S. Passchier, C. E. Stickley, U. Roehl, S. Sugisaki, L. Tauxe, T. van de Flierdt, M. Olney, F. Sangiorgi, A. Sluijs, C. Escutia, H. Brinkhuis, H. Brinkhuis, C. E. Dotti, A. Klaus, A. Fehr, T. Williams, J. A. P. Bendle, P. K. Bijl, S. M. Bohaty, S. A. Carr, R. B. Dunbar, J.-A. Flores, J. J. Gonzalez, T. G. Hayden, M. Iwai, F. J. Jimenez-Espejo, K. Katsuki, G. S. Kong, R. M. McKay, M. Nakai, M. P. Olney, S. Passchier, S. F. Pekar, J. Pross, C. Riesselman, U. Rohl, T. Sakai, U. Salzmann, P. K. Shrivastava, C. E. Stickley, S. Sugisaki, L. Tauxe, S. Tuo, T. van de Flierdt, K. Welsh, M. Yamane, S. Expedition, Science 2013, 340, 341; g) J. Fu, D. An, Y. Song, C. Wang, M. Qiu, H. Zhang, Coord. Chem. Rev. 2020, 422, 213467.
- 4a) G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 2014, 345, 1149; b) S. Sacanna, D. J. Pine, Curr. Opin. Colloid Interface Sci. 2011, 16, 96; c) S. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557; d) Y. Yang, G. Chen, L. J. Martinez-Miranda, H. Yu, K. Liu, Z. Nie, J. Am. Chem. Soc. 2016, 138, 68; e) C. de Vet, L. Gartzia-Rivero, P. Schafer, G. Raffy, A. Del Guerzo, Small 2020, 16, 1906723; f) K. Deng, Z. Luo, L. Tan, Z. Quan, Chem. Soc. Rev. 2020, 49, 6002.
- 5a) W. Wang, P. Wang, L. Chen, M. Zhao, C.-T. Hung, C. Yu, A. A. Al-Khalaf, W. N. Hozzein, F. Zhang, X. Li, D. Zhao, Chem 2020, 6, 1097; b) B. Song, Y. Zhong, S. Wu, B. Chu, Y. Su, Y. He, J. Am. Chem. Soc. 2016, 138, 4824; c) Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem., Int. Ed. 2014, 53, 11926; d) C. Chen, X. Li, J. Deng, Z. Wang, Y. Wang, ChemSusChem 2018, 11, 2540.
- 6a) V. N. Manoharan, Science 2015, 349, 1253751; b) N. Vogel, M. Retsch, C. A. Fustin, A. Del Campo, U. Jonas, Chem. Rev. 2015, 115, 6265; c) M. A. Kamal, A. V. Petukhov, A. Pal, J. Phys. Chem. 2020, 124, 5754; d) M. Wang, L. Dai, J. Duan, Z. Ding, P. Wang, Z. Li, H. Xing, Y. Tian, Angew. Chem., Int. Ed. 2020, 59, 6389.
- 7a) S. Chen, T. Wu, X. Wu, L. Li, M. Hao, G. Wu, T. Zhang, Angew. Chem., Int. Ed. 2020, 59, 23800; b) B. Y. Guan, L. Yu, X. W. Lou, J. Am. Chem. Soc. 2016, 138, 11306.
- 8a) S. Wang, X. Zhu, Y. Tian, X. Wang, J. Mater. Sci. 2016, 51, 6086; b) B. Y. Guan, S. L. Zhang, X. W. D. Lou, Angew. Chem., Int. Ed. 2018, 57, 6176.
- 9a) Y. Fang, Y. Lv, F. Gong, Z. Wu, X. Li, H. Zhu, L. Zhou, C. Yao, F. Zhang, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2015, 137, 2808; b) Y. Chen, P. Xu, M. Wu, Q. Meng, H. Chen, Z. Shu, J. Wang, L. Zhang, Y. Li, J. Shi, Adv. Mater. 2014, 26, 4294; c) S. Zhang, Q. Weng, F. Zhao, H. Gao, P. Chen, X. Chen, Z. An, J. Colloid Interface Sci. 2017, 496, 35.
- 10a) K. Chaudhary, K. Bhakuni, N. K. Mogha, P. Venkatesu, D. T. Masram, ACS Biomater. Sci. Eng. 2020, 6, 4881; b) Q. Ma, Y. Yu, M. Sindoro, A. G. Fane, R. Wang, H. Zhang, Adv. Mater. 2017, 29, 1605361; c) M. M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark, M. J. MacLachlan, Chem. Soc. Rev. 2015, 44, 250.
- 11a) M.-M. Titirici, M. Antonietti, N. Baccile, Green Chem. 2008, 10, 1204; b) B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 813; c) L. Xie, Z. Wang, J. Liu, Y. Gong, S. Mao, G. Lü, X. Ma, L. Yu, Y. Wang, Carbon 2019, 155, 611; d) J. Liu, L. Xie, J. Deng, Y. Gong, G. Tang, H. Bai, Y. Wang, Chem. Mater. 2019, 31, 7186; e) J. Liu, L. Xie, Z. Wang, S. Mao, Y. Gong, Y. Wang, Chem. Commun. 2019, 56, 229; f) S. Leng, L. Leng, L. Chen, J. Chen, J. Chen, W. Zhou, Bioresour. Technol. 2020, 318, 124081; g) F. Veltri, F. Alessandro, A. Scarcello, A. Beneduci, M. Arias Polanco, D. Cid Perez, C. Vacacela Gomez, A. Tavolaro, G. Giordano, L. S. Caputi, Nanomaterials 2020, 10, 655.
- 12a) L. Xie, H. Wang, C. Chen, S. Mao, Y. Chen, H. Li, Y. Wang, Research 2018, 2018, 5807980; b) S. Feng, W. Li, J. Wang, Y. Song, A. A. Elzatahry, Y. Xia, D. Zhao, Nanoscale 2014, 6, 14657.
- 13H. Yang, D. Zhao, J. Mater. Chem. 2005, 15, 1217.
- 14C. Z. Yu, J. Fan, B. Z. Tian, D. Y. Zhao, G. D. Stucky, Adv. Mater. 2002, 14, 1742.
- 15L. Peng, C. T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang, Y. Tang, W. Li, D. Zhao, J. Am. Chem. Soc. 2019, 141, 7073.
- 16W. Gao, A. Pei, X. Feng, C. Hennessy, J. Wang, J. Am. Chem. Soc. 2013, 135, 998.
- 17a) J. Ge, Y. Hu, M. Biasini, W. P. Beyermann, Y. Yin, Angew. Chem., Int. Ed. 2007, 46, 4342; b) J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew. Chem., Int. Ed. 2009, 48, 5875; c) J. Hwang, T. Heil, M. Antonietti, B. Schmidt, J. Am. Chem. Soc. 2018, 140, 2947.
- 18a) N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, C. J. Murphy, J. Mater. Chem. 2002, 12, 2909; b) J. L. Baker, A. Widmer-Cooper, M. F. Toney, P. L. Geissler, A. P. Alivisatos, Nano Lett. 2010, 10, 195.
- 19a) M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, C. A. Mirkin, Nat. Mater. 2010, 9, 913; b) M. Zanella, G. Bertoni, I. R. Franchini, R. Brescia, D. Baranov, L. Manna, Chem. Commun. 2011, 47, 203.
- 20X. Li, L. Zhou, Y. Wei, A. M. El-Toni, F. Zhang, D. Zhao, J. Am. Chem. Soc. 2014, 136, 15086.
- 21a) E. Doustkhah, J. Lin, S. Rostamnia, C. Len, R. Luque, X. Luo, Y. Bando, K. C. Wu, J. Kim, Y. Yamauchi, Y. Ide, Chem. - Eur. J. 2019, 25, 1614; b) F. L. Meng, Z. L. Wang, H. X. Zhong, J. Wang, J. M. Yan, X. B. Zhang, Adv. Mater. 2016, 28, 7948; c) Z. S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Mullen, Adv. Mater. 2014, 26, 1450; d) X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li, Y. Wang, J. Am. Chem. Soc. 2012, 134, 16987.
- 22a) M. A. Horsch, Z. Zhang, S. C. Glotzer, Soft Matter 2010, 6, 945; b) X. Ye, J. A. Millan, M. Engel, J. Chen, B. T. Diroll, S. C. Glotzer, C. B. Murray, Nano Lett. 2013, 13, 4980; c) K. L. Young, M. L. Personick, M. Engel, P. F. Damasceno, S. N. Barnaby, R. Bleher, T. Li, S. C. Glotzer, B. Lee, C. A. Mirkin, Angew. Chem., Int. Ed. 2013, 52, 13980.