Precisely Defining Local Gradients of Stimuli-Responsive Hydrogels for Complex 2D-to-4D Shape Evolutions
Jincai Yin
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorCorresponding Author
Wenxin Fan
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZihan Xu
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorJinghua Duan
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorYanzhi Xia
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorCorresponding Author
Zhihong Nie
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kunyan Sui
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJincai Yin
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorCorresponding Author
Wenxin Fan
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZihan Xu
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorJinghua Duan
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorYanzhi Xia
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorCorresponding Author
Zhihong Nie
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kunyan Sui
College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The intellectualization and complication of existing self-shaping materials are limited by the inseparable monotonic relationship between their deformation rate and deformation degree (i.e., a higher deformation rate is accompanied by a high deformation degree). This causes that they can only deform from 2D to 3D states. Here, a simple yet versatile strategy to decouple the monotonic correlation between the deformation rate and deformation degree of self-shaping hydrogels is presented for achieving complex deformations from 2D to temporary 3D to 3D (2D-to-4D). It is demonstrated that when the gradient hydrogels prepared by photopolymerization possess dense polymer networks, the local regions with a high deformation rate can exhibit a low deformation degree. The resulting hydrogels can thus deform in a novel 2D-to-4D mode under external stimuli. During the deformation, they first transform into the temporary shapes induced by the local deformation rate difference, and then transform into the final shapes determined by the local deformation degree difference. Through controlling the ultraviolet irradiation direction and time to precisely program the local gradients of self-shaping hydrogels, they can be designed to produce various unprecedented yet controllable 2D-to-4D shape evolutions on demand, such as transformable origami, sequential gesture actions in finger-guessing games, mobile octopuses, time switch, etc.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smll202104440-sup-0001-SuppMat.pdf829.1 KB | Supporting Information |
smll202104440-sup-0002-MovieS1.mp43.6 MB | Supporting Movie 1 |
smll202104440-sup-0003-MovieS2.mp43.5 MB | Supporting Movie 2 |
smll202104440-sup-0004-MovieS3.mp43.4 MB | Supporting Movie 3 |
smll202104440-sup-0005-MovieS4.mp43.6 MB | Supporting Movie 4 |
smll202104440-sup-0006-MovieS5.mp46.8 MB | Supporting Movie 5 |
smll202104440-sup-0007-MovieS6.mp46.7 MB | Supporting Movie 6 |
smll202104440-sup-0008-MovieS7.mp47 MB | Supporting Movie 7 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, Science 2014, 345, 644; b) C. Li, A. Iscen, H. Sai, K. Sato, N. A. Sather, S. M. Chin, Z. Álvarez, L. C. Palmer, G. C. Schatz, S. I. Stupp, Nat. Mater. 2020, 19, 900; c) Z. Jiang, Y. Xiao, X. Tong, Y. Zhao, Angew. Chem., Int. Ed. 2019, 58, 5332; d) Z. Sun, Y. Yamauchi, F. Araoka, Y. S. Kim, J. Bergueiro, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima, T. Aida, Angew. Chem., Int. Ed. 2018, 57, 15772; e) Y. Ma, M. Hua, S. Wu, Y. Du, X. Pei, X. Zhu, F. Zhou, X. He, Sci. Adv. 2020, 6, eabd2520; f) S. Zhuo, Z. Zhao, Z. Xie, Y. Hao, Y. Xu, T. Zhao, H. Li, E. Knubben, L. Wen, L. Jiang, M. Liu, Sci. Adv. 2020, 6, eaax1464. g) Y. Huang, H. K. Bisoyi, S. Huang, M. Wang, X. M. Chen, Z. Liu, H. Yang, Q. Li, Angew. Chem., Int. Ed. 2021, 60, 11247.
- 2a) D. Seliktar, Science 2012, 336, 1124; b) Y. Zhang, H. Gao, H. Wang, Z. Xu, X. Chen, B. Liu, Y. Shi, Y. Lu, L. Wen, Y. Li, Z. Li, Y. Men, X. Feng, W. Liu, Adv. Funct. Mater. 2018, 28, 1705962; c) C. M. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, K. Gall, Biomaterials 2007, 28, 2255.
- 3K. Malachowski, J. Breger, H. R. Kwag, M. O. Wang, J. P. Fisher, F. M. Selaru, D. H. Gracias, Angew. Chem., Int. Ed. 2014, 53, 8045.
- 4a) L. Ionov, Mater. Today 2014, 17, 494; b) H. Ko, A. Javey, Acc. Chem. Res. 2017, 50, 691; c) J. Sun, W. Zhang, R. Guterman, H. Lin, J. Yuan, Nat. Commun. 2018, 9, 1717.
- 5a) Y. S. Zhang, A. Khademhosseini, Science 2017, 356, eaaf3627; b) W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma, J. Guan, Nano Lett. 2020, 20, 803; c) C. Ma, W. Lu, X. Yang, J. He, X. Le, L. Wang, J. Zhang, M. J. Serpe, Y. Huang, T. Chen, Adv. Funct. Mater. 2018, 28, 1704568; d) Z. Lei, P. Wu, Mater. Horiz. 2019, 6, 538.
- 6a) S. Armon, E. Efrati, R. Kupferman, E. Sharon, Science 2011, 333, 1726; b) S. X. Wei, W. Lu, X. X. Le, C. X. Ma, H. Lin, B. Y. Wu, J. W. Zhang, P. Theato, T. Chen, Angew. Chem., Int. Ed. 2019, 58, 16243.
- 7a) K. Liu, Y. Zhang, H. Cao, H. Liu, Y. Geng, W. Yuan, J. Zhou, Z. Wu, G. Shan, Y. Bao, Q. Zhao, T. Xie, P. Pan, Adv. Mater. 2020, 32, 2001693; b) A. A. Bauhofer, S. Krodel, J. Rys, O. R. Bilal, A. Constantinescu, C. Daraio, Adv. Mater. 2017, 29, 1703024; c) A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413; d) H. Kim, H. Lee, I. Ha, J. Jung, P. Won, H. Cho, J. Yeo, S. Hong, S. Han, J. Kwon, K. J. Cho, S. H. Ko, Adv. Funct. Mater. 2018, 28, 1801847; e) S. Huang, Y. Huang, Q. Li, Small Struct. 2021, 2, 2100038.
- 8a) J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Science 2012, 335, 1201; b) L. Huang, R. Jiang, J. Wu, J. Song, H. Bai, B. Li, Q. Zhao, T. Xie, Adv. Mater. 2017, 29, 1605390; c) A. W. Hauser, A. A. Evans, J. H. Na, R. C. Hayward, Angew. Chem., Int. Ed. 2015, 54, 5434; d) X. Peng, Y. Li, Q. Zhang, C. Shang, Q. W. Bai, H. Wang, Adv. Funct. Mater. 2016, 26, 4491.
- 9a) C. Ma, X. Le, X. Tang, J. He, P. Xiao, J. Zheng, H. Xiao, W. Lu, J. Zhang, Y. Huang, T. Chen, Adv. Funct. Mater. 2016, 26, 8670; b) E. Palleau, D. Morales, M. D. Dickey, O. D. Velev, Nat. Commun. 2013, 4, 2257.
- 10a) J. H. Kang, H. Kim, C. D. Santangelo, R. C. Hayward, Adv. Mater. 2019, 31, 0193006; b) X. Hao, Z. Xu, C. Li, W. Hong, Q. Zheng, Z. Wu, Adv. Mater. 2020, 32, 2000781; c) B. P. Lee, S. Konst, Adv. Mater. 2014, 26, 3415; d) H. Therien-Aubin, Z. Wu, Z. Nie, E. Kumacheva, J. Am. Chem. Soc. 2013, 135, 4834.
- 11a) Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao, W. Li, Y. Wu, L. Liu, F. Yan, Adv. Mater. 2021, 33, 2008486; b) P. Xue, H. K. Bisoyi, Y. Chen, H. Zeng, J. Yang, X. Yang, P. Lv, X. Zhang, A. Priimagi, L. Wang, X. Xu, Q. Li, Angew. Chem., Int. Ed. 2021, 60, 3390; c) Q. Zhu, C. Dai, D. Wagner, M. Daab, W. Hong, J. Breu, Q. Zheng, Z. Wu, Adv. Mater. 2020, 32, 2005567; d) T. A. Asoh, M. Matsusaki, T. Kaneko, M. Akashi, Adv. Mater. 2008, 20, 2080.
- 12X. Peng, T. Liu, Q. Zhang, C. Shang, Q. W. Bai, H. Wang, Adv. Funct. Mater. 2017, 27, 1701962.
- 13Q. Zhao, X. Yang, C. Ma, D. Chen, H. Bai, T. Li, W. Yang, T. Xie, Mater. Horiz. 2016, 3, 422.
- 14a) X. Kuang, J. Wu, K. Chen, Z. Zhao, Z. Ding, F. Hu, D. Fang, H. Qi, Sci. Adv. 2019, 5, eaav5790; b) M. O. Saed, C. P. Ambulo, H. Kim, R. De, V. Raval, K. Searles, D. A. Siddiqui, J. M. O. Cue, M. C. Stefan, M. R. Shankar, Y. H. Ware, Adv. Funct. Mater. 2019, 29, 1806412; c) K. Kobayashi, S. H. Oh, C. Yoon, D. H. Gracias, Macromol. Rapid Commun. 2018, 39, 1700692; d) Y. Mao, K. Yu, M. S. Isakov, J. Wu, M. L. Dunn, H. J. Qi, Sci. Rep. 2015, 5, 13616.
- 15M. Krausko, Z. Perutka, M. Sebela, O. Samajova, J. Samaj, O. Novak, A. Pavlovic, New Phytol. 2017, 213, 1818.
- 16E. Couturier, S. Courrech du Pont, S. Douady, PLoS One 2009, 4, e7968.
- 17R. Honda, J. I. Wakita, M. Katori, J. Phys. Soc. Jpn. 2015, 84, 114002.
10.7566/JPSJ.84.114002 Google Scholar
- 18a) J. Yin, D. Zhang, Z. Xu, W. Fan, Y. Xia, K. Sui, ACS Appl. Mater. Interfaces 2020, 12, 49042; b) J. Wang, J. Wang, Z. Chen, S. Fang, Y. Zhu, R. H. Baughman, L. Jiang, Chem. Mater. 2017, 29, 9793; c) H. Cui, N. Pan, W. Fan, C. Liu, Y. Li, Y. Xia, K. Sui, Adv. Funct. Mater. 2019, 29, 1807692; d) R. Luo, J. Wu, N. D. Dinh, C. Chen, Adv. Funct. Mater. 2015, 25, 7272; e) S. Xiao, M. Zhang, X. He, L. Huang, Y. Zhang, B. Ren, M. Zhong, Y. Chang, J. Yang, J. Zheng, ACS Appl. Mater. Interfaces 2018, 10, 21642.
- 19W. Fan, C. Shan, H. Guo, J. Sang, R. Wang, R. Zheng, K. Sui, Z. Nie, Sci. Adv. 2019, 5, eaav7174.
- 20a) H. Kim, S. J. Lee, Adv. Funct. Mater. 2015, 25, 4496; b) M. J. Motala, D. Perlitz, C. M. Daly, P. Yuan, R. G. Nuzzo, K. J. Hsia, Extreme Mech. Lett. 2015, 3, 8.
- 21A. S. Nia, W. H. Binder, Prog. Polym. Sci. 2017, 67, 48.
- 22M. J. Motala, D. Perlitz, C. M. Daly, P. Yuan, R. G. Nuzzoet, K. J. Hsia, Extreme Mech. Lett. 2015, 3, 8.