Rationalizing Surface Electronic Configuration of Ni–Fe LDO by Introducing Cationic Nickel Vacancies as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries
Longfei Ren
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorRuixin Zheng
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorBo Zhou
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorHaoyang Xu
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorRunjing Li
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorChuan Zhao
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorXiaojuan Wen
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorTing Zeng
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorCorresponding Author
Chaozhu Shu
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
E-mail: [email protected]
Search for more papers by this authorLongfei Ren
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorRuixin Zheng
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorBo Zhou
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorHaoyang Xu
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorRunjing Li
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorChuan Zhao
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorXiaojuan Wen
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorTing Zeng
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorCorresponding Author
Chaozhu Shu
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Cationic defect engineering is an effective strategy to optimize the electronic structure of active sites and boost the oxygen electrode reactions in lithium–oxygen batteries (LOBs). Herein, Ni–Fe layered double oxides enriched with cationic nickel vacancies (Ni–Fe LDO-VNi) are first designed and studied as the electrocatalysts for LOBs. Based on the density functional theory calculation, the existence of nickel vacancy in Ni–Fe LDO-VNi significantly improves its intrinsic affinity toward intermediates, thereby fundamentally optimizing the formation and decomposition pathway of Li2O2. In addition, the number of eg electrons on each nickel site is 1.19 for Ni–Fe LDO-VNi, which is much closer to 1 than 1.49 for Ni–Fe LDO. The near-unity occupation of eg orbital enhances the covalency of transition metal–oxygen bonds and thus improves the electrocatalytic activity of Ni–Fe LDO-VNi toward oxygen electrode reactions. The experimental results show that the LOBs with Ni–Fe LDO-VNi electrode deliver low overpotentials of 0.11/0.29 V during the oxygen reduction reaction/oxygen evolution reaction, respectively, large specific capacities of 13 933 mA h g−1 and superior cycling stability of over 826 h. This study provides a novel approach to optimize the electrocatalytic activity of LDO through reasonable defect engineering.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104349-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Li, R. Zhang, R. Gao, G.-Q. Shen, L. Pan, Y. Yao, K. Yu, X. Zhang, J.-J. Zou, Appl. Catal., B. 2019, 244, 536.
- 2C. Zhao, Y. Lu, L. Chen, Y. Hu, InfoMat 2020, 2, 126.
- 3Y. Zhang, P. Zhang, S. Zhang, Z. Wang, N. Li, S. R. P. Silva, G. Shao, InfoMat 2021, 3, 790.
- 4C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang, L. Qu, InfoMat 2020, 2, 509.
- 5T. Zhang, B. Zou, X. Bi, M. Li, J. Wen, F. Huo, K. Amine, J. Lu, ACS Energy Lett. 2019, 4, 2782.
- 6W.-J. Kwak, J.-B. Park, H.-G. Jung, Y.-K. Sun, ACS Energy Lett. 2017, 2, 2756.
- 7B. Liu, W. Xu, J. Zheng, P. Yan, E. D. Walter, N. Isern, M. E. Bowden, M. H. Engelhard, S. T. Kim, J. Read, B. D. Adams, X. Li, J. Cho, C. Wang, J.-G. Zhang, ACS Energy Lett. 2017, 2, 2525.
- 8J. Lu, S. Dey, I. Temprano, Y. Jin, C. Xu, Y. Shao, C. P. Grey, ACS Energy Lett. 2020, 5, 3681.
- 9Y. Zhao, J. Guo, InfoMat 2020, 2, 866.
- 10J. Li, C. Shu, Z. Ran, M. Li, R. Zheng, J. Long, ACS Appl. Mater. Interfaces 2019, 11, 29868.
- 11A. Dutta, R. A. Wong, W. Park, K. Yamanaka, T. Ohta, Y. Jung, H. R. Byon, Nat. Commun. 2018, 9, 680.
- 12L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu, Z. Chen, J. Lu, Adv. Energy Mater. 2018, 8, 1800348.
- 13M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594.
- 14X. Liu, L. Zhao, H. Xu, Q. Huang, Y. Wang, C. Hou, Y. Hou, J. Wang, F. Dang, J. Zhang, Adv. Energy Mater. 2020, 10, 2001415.
- 15R. Gao, Z. Yang, L. Zheng, L. Gu, L. Liu, Y. Lee, Z. Hu, X. Liu, ACS Catal. 2018, 8, 1955.
- 16X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, M. Yang, X. Wang, Z. Cheng, Z. Fu, Y. Lu, Nat. Commun. 2019, 10, 1409.
- 17S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi, J. Zeng, Nat. Commun. 2016, 7, 11510.
- 18A. Hu, M. Zhou, T. Lei, Y. Hu, X. Du, C. Gong, C. Shu, J. Long, J. Zhu, W. Chen, X. Wang, J. Xiong, Adv. Energy Mater. 2020, 10, 2002180.
- 19Y.-Z. Jin, Z. Li, J.-Q. Wang, R. Li, Z.-Q. Li, H. Liu, J. Mao, C.-K. Dong, J. Yang, S.-Z. Qiao, X.-W. Du, Adv. Energy Mater. 2018, 8, 1703469.
- 20J. Pandey, B. Hua, W. Ng, Y. Yang, K. van der Veen, J. Chen, N. J. Geels, J.-L. Luo, G. Rothenberg, N. Yan, Green Chem. 2017, 19, 2793.
- 21Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 2017, 117, 10121.
- 22J. Duan, S. Chen, S. Dai, S. Z. Qiao, Adv. Funct. Mater. 2014, 24, 2072.
- 23J. Duan, Y. Zheng, S. Chen, Y. Tang, M. Jaroniec, S. Qiao, Chem. Commun. 2013, 49, 7705.
- 24J. Zhu, X. Ren, J. Liu, W. Zhang, Z. Wen, ACS Catal. 2014, 5, 73.
- 25P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau, M. Driess, ACS Catal. 2015, 5, 2017.
- 26W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem., Int. Ed. Engl. 2016, 55, 2650.
- 27E. Lee, J.-H. Jang, Y.-U. Kwon, J. Power Sources 2015, 273, 735.
- 28R. Zhang, Y.-C. Zhang, L. Pan, G.-Q. Shen, N. Mahmood, Y.-H. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu, J.-J. Zou, ACS Catal. 2018, 8, 3803.
- 29F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79.
- 30D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29, 1606459.
- 31J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.
- 32Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu, G. Zhang, S. Y. Pang, W. Lu, C. L. Mak, X. Luo, L. Zhou, M. Wei, H. Huang, J. Am. Chem. Soc. 2019, 141, 8136.
- 33B. Sasi, K. G. Gopchandran, Nanotechnology 2007, 18, 115613.
- 34X. Luo, C. Liu, X. Wang, Q.i Shao, Y. Pi, T. Zhu, Y. Li, . Huang, Nano Lett. 2020, 20, 1967.
- 35J. Li, C. Shu, C. Liu, X. Chen, A. Hu, J. Long, Small 2020, 16, 2001812.
- 36R. Zheng, C. Shu, X. Chen, Y. Yan, M. He, D. Du, L. Ren, A. Hu, J. Long, Energy Storage Mater. 2021, 40, 41.
- 37Y. Gong, W. Ding, Z. Li, R. Su, X. Zhang, J. Wang, J. Zhou, Z. Wang, Y. Gao, S. Li, P. Guan, Z. Wei, C. Sun, ACS Catal. 2018, 8, 4082.
- 38Y. Zhou, D. Yan, Q. Gu, S. Zhu, L. Wang, H. Peng, Y. Zhao, Appl. Catal., B 2021, 285, 119792.
- 39Y. Zhao, X. Jia, G. Chen, L. Shang, G. I. Waterhouse, L. Z. Wu, C. H. Tung, D. O'Hare, T. Zhang, J. Am. Chem. Soc. 2016, 138, 6517.
- 40X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun, J. Zhang, Electrochim. Acta 2019, 296, 181.
- 41Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Angew. Chem., Int. Ed. Engl. 2017, 56, 5867.
- 42J. Zhang, D. Zeng, Q. Zhu, J. Wu, Q. Huang, C. Xie, J. Phys. Chem. C 2016, 120, 3936.
- 43H. Yang, Y. Liu, S. Luo, Z. Zhao, X. Wang, Y. Luo, Z. Wang, J. Jin, J. Ma, ACS Catal. 2017, 7, 5557.
- 44A. Hu, J. Long, C. Shu, C. Xu, T. Yang, R. Liang, J. Li, ChemElectroChem 2019, 6, 349.
- 45R. Liang, A. Hu, M. Li, Z. Ran, C. Shu, J. Long, Electrochim. Acta 2019, 321, 134716.
- 46Y. Dou, X.-G. Wang, D. Wang, Q. Zhang, C. Wang, G. Chen, Y. Wei, Z. Zhou, Chem. Eng. J. 2021, 409, 128145.
- 47C. Zhang, N. Dandu, S. Rastegar, S. N. Misal, Z. Hemmat, A. T. Ngo, L. A. Curtiss, A. Salehi-Khojin, Adv. Energy Mater. 2020, 10, 2000201.
- 48M. Li, X. Wang, F. Li, L. Zheng, J. Xu, J. Yu, Adv. Mater. 2020, 32, 1907098.
- 49P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. Miao, R. Wang, Z. Zhang, L. Yin, Adv. Energy Mater. 2019, 9, 1900788.
- 50Y. Zhao, G. I. N. Waterhouse, G. Chen, X. Xiong, L. Z. Wu, C. H. Tung, T. Zhang, Chem. Soc. Rev. 2019, 48, 1972.
- 51Y. Wang, M. Qiao, Y. Li, S. Wang, Small 2018, 14, 1800136.
- 52Z. Ran, C. Shu, Z. Hou, W. Zhang, Y. Yan, M. He, J. Long, Chem. Eng. J. 2021, 413, 127404.
- 53H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894.
- 54J. Li, C. Shu, A. Hu, Z. Ran, M. Li, R. Zheng, J. Long, Chem. Eng. J. 2020, 381, 122678.
- 55H. Wu, W. Sun, J. Shen, D. W. Rooney, Z. Wang, K. Sun, Nanoscale 2018, 10, 10221.
- 56G. Kresse, J. Furthmuller, Comp. Mater. Sci. 1996, 6, 15.
- 57G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 58J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 59G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 873.
- 60P. E. Blochl, Phys. Rev. B: Condens. Matter 1994, 50, 17953.