Bacteria-Triggered Multifunctional Hydrogel for Localized Chemodynamic and Low-Temperature Photothermal Sterilization
Xiaodong Lin
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorYuan Fang
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorZhe Hao
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorHaotian Wu
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorMinyang Zhao
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorCorresponding Author
Shuo Wang
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yaqing Liu
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorXiaodong Lin
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorYuan Fang
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorZhe Hao
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorHaotian Wu
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorMinyang Zhao
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorCorresponding Author
Shuo Wang
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yaqing Liu
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Pathogenic infections seriously threaten public health and have been considered as one of the most critical challenges in clinical therapy. Construction of a safe and efficient photothermal antibacterial platform is a promising strategy for treatment of bacterial infections. Considering that high temperature does harm to the normal tissues and cells, herein, a bacteria-triggered multifunctional hydrogel is constructed for low-temperature photothermal sterilization with high efficiency by integrating localized chemodynamic therapy (L-CDT). The hydrogel is constructed by incorporating copper sulfide nanoparticles (CuSNPs) with photothermal profile into the network of hyaluronic acid (HA) and Fe3+-EDTA complexes, named as CHFH (CuSNPs-HA-Fe3+-EDTA hydrogel). Bacteria can be accumulated on the surface of CHFH, which secretes hyaluronidase to decompose the HA and release Fe3+. The Fe3+ is reduced into Fe2+ in microenvironment of bacteria to trigger Fenton reaction. The generated hydroxyl radicals result in sterilization based on L-CDT within short range. By integrating with photothermal property of CuSNPs, low-temperature photothermal therapy (LT-PTT) for sterilization is realized, which improves the antibacterial efficiency while minimizes damage to normal tissues. The CHFH is further used to prepare Band aid which effectively promotes the Staphylococcus aureus-infected wound healing process in vivo, confirming the great potential for clinical application.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202103303-sup-0001-SuppMat.pdf1.3 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) R. F. Khabbaz, R. R. Moseley, R. J. Steiner, A. M. Levitt, B. P. Bell, Lancet 2014, 384, 53; b) Y. Qian, F. Qi, Q. Chen, Q. Zhang, Z. Qiao, S. Zhang, T. Wei, Q. Yu, S. Yu, Z. Mao, ACS Appl. Mater. Interfaces 2018, 10, 15395; c) Y. Choi, J. H. Hwang, S. Y. Lee, Small Methods 2018, 2, 1700351.
- 2a) P. Bradley, N. C. Gordon, T. M. Walker, L. Dunn, S. Heys, B. Huang, S. Earle, L. J. Pankhurst, L. Anson, M. De Cesare, P. Piazza, A. A. Votintseva, T. Golubchik, D. J. Wilson, D. H. Wyllie, R. Diel, S. Niemann, S. Feuerriegel, T. A. Kohl, N. Ismail, S. V. Omar, E. G. Smith, D. Buck, G. McVean, A. S. Walker, T. E. A. Peto, D. W. Crook, Z. Iqbal, Nat. Commun. 2015, 6, 10063; b) Z. Zhao, R. Yan, X. Yi, J. Li, J. Rao, Z. Guo, Y. Yang, W. Li, Y. Q. Li, C. Y. Chen, ACS Nano 2017, 11, 4428; c) P. Pan, H. Yu, Q. Liu, X. Kong, H. Chen, J. Chen, Q. Liu, D. Li, Y. Kang, H. Y. Sun, W. F. Zhou, S. Tian, S. L. Cui, F. Zhu, Y. Y. Li, Y. Huang, T. J. Hou, ACS Cent. Sci. 2017, 3, 1208.
- 3a) X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, C. Li, ACS Appl. Mater. Interfaces 2017, 9, 30470; b) Y. Wang, T. Wei, Y. Qu, Y. Zhou, Y. Zheng, C. Huang, Y. Zhang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces 2019, 12, 21283.
- 4a) J. R. Melamed, R. S. Edelstein, E. S. Day, ACS Nano 2015, 9, 6; b) W. N. Wang, P. Pei, Z. Y. Chu, B. J. Chen, H. S. Qian, Z. B. Zha, W. Zhou, T. Liu, M. Shao, H. Wang, Chem. Eng. J. 2020, 397, 125488; c) X. Lai, Y. Feng, J. Pollard, J. N. Chin, M. J. Rybak, R. Bucki, R. F. Epand, R. M. Epand, P. B. Savage, Acc. Chem. Res. 2008, 41, 1233; d) X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, C. Li, Nanoscale 2018, 10, 18520.
- 5Y. Yang, W. Zhu, Z. Dong, Y. Chao, L. Xu, M. Chen, Z. Liu, Adv. Mater. 2017, 29, 1703588.
- 6a) S. Zhang, W. Guo, J. Wei, C. Li, X. J. Liang, M. Yin, ACS Nano 2017, 11, 3797; b) X. R. Deng, K. Li, X. C. Cai, B. Liu, Y. Wei, K. R. Deng, Z. X. Xie, Z. Wu, P. A. Ma, Z. Y. Hou, Z. Y. Cheng, J. Lin, Adv. Mater. 2017, 29, 1701266.
- 7a) C. Q. You, Y. J. Li, Y. X. Dong, L. K. Ning, Y. Zhang, L. Y. Yao, F. Wang, ACS Biomater. Sci. Eng. 2020, 6, 1535; b) K. Zhang, X. D. Meng, Y. Cao, Z. Yang, H. F. Dong, Y. D. Zhang, H. T. Lu, Z. J. Shi, X. J. Zhang, Adv. Funct. Mater. 2018, 28, 1804634; c) W. H. Chen, G. F. Luo, Q. Lei, S. Hong, W. X. Qiu, L. H. Liu, S. X. Cheng, X. Z. Zhang, ACS Nano 2017, 11, 1419.
- 8D. Liu, L. Ma, Y. An, Y. Li, Y. Liu, L. Wang, J. Guo, J. Wang, J. Zhou, Adv. Funct. Mater. 2016, 26, 4749.
- 9a) Q. Gao, X. Zhang, W. Y. Yin, D. Q. Ma, C. J. Xie, L. R. Zheng, X. H. Dong, L. Q. Mei, C. Z. Wang, Z. J. Gu, Y. L. Zhao, Small 2018, 14, 1802290; b) Z. Li, J. Han, L. Yu, X. Qian, H. Xing, H. Lin, M. Wu, T. Yang, Y. Chen, Adv. Funct. Mater. 2018, 28, 1800145.
- 10H. Zheng, S. Wang, L. Zhou, X. He, Z. Cheng, F. Cheng, Z. Liu, X. Wang, Y. Chen, Q. Zhang, Chem. Eng. J. 2021, 404, 126439.
- 11a) Y. Shi, J. Zhang, H. Huang, C. Cao, J. Yin, W. Xu, W. Wang, X. Song, Y. Zhang, X. Dong, Adv. Healthcare Mater. 2020, 9, 2000005; b) X. Yu, A. Li, C. Zhao, K. Yang, X. Chen, W. Li, ACS Nano 2017, 11, 3990.
- 12a) W. A. Pryor, Annu. Rev. Physiol. 1986, 48, 657; b) S. Hatz, J. D. Lambert, P. R. Ogilby, Photochem. Photobiol. Sci. 2007, 6, 1106.
- 13a) J. Sun, L. Song, Y. Fan, L. Tian, S. Luan, S. Niu, L. Ren, W. Ming, J. Zhao, ACS Appl. Mater. Interfaces 2019, 11, 26581; b) S. B. Wang, X. H. Liu, B. Li, J. X. Fan, J. J. Ye, H. Cheng, X. Z. Zhang, Adv. Funct. Mater. 2019, 29, 1904093.
- 14a) M. E. Cooke, S. W. Jones, B. Ter Horst, N. Moiemen, M. Snow, G. Chouhan, L. J. Hill, M. Esmaeli, R. J. Moakes, J. Holton, R. Nandra, R. L. Williams, A. M. Smith, L. M. Grove, Adv. Mater. 2018, 30, 1705013; b) J. E. Mealy, J. J. Chung, H. H. Jeong, D. Issadore, D. Lee, P. Atluri, J. A. Burdick, Adv. Mater. 2018, 30, 1705912; c) X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165.
- 15a) N. S. Kehr, E. A. Prasetyanto, K. Benson, B. Ergün, A. Galstyan, H. J. Galla, Angew. Chem., Int. Ed. 2013, 52, 1156; b) J. S. Chung, E. J. Kim, S. H. Hur, Chem. Eng. J. 2014, 246, 64; c) L. Mi, S. Jiang, Biomaterials 2012, 33, 8928.
- 16a) D. W. Zheng, Q. Lei, J. Y. Zhu, J. X. Fan, C. X. Li, C. Li, Z. Xu, S. X. Cheng, X. Z. Zhang, Nano Lett. 2017, 17, 284; b) J. Bai, X. Jia, W. Zhen, W. Cheng, X. Jiang, J. Am. Chem. Soc. 2018, 140, 106; c) S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, D. N. Patel, A. J. Bauer, A. M. Cantley, W. S. Yang, B. Morrison, B. R. Stockwell, Cell 2012, 149, 1060.
- 17a) M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, J. J. Collins, Cell 2007, 130, 797; b) M. L. Guerinot, Annu. Rev. Microbiol. 1994, 48, 743; c) M. F. Chung, W. T. Chia, W. L. Wan, Y. J. Lin, H. W. Sung, J. Am. Chem. Soc. 2015, 137, 12462; d) D. Wang, F. Peng, J. Li, Y. Qiao, Q. Li, X. Liu, Mater. Today 2017, 20, 238; e) C. Vilchèze, T. Hartman, B. Weinrick, W. R. Jacobs, Nat. Commun. 2013, 4, 1881.
- 18H. Ji, K. Dong, Z. Yan, C. Ding, Z. Chen, J. S. Ren, X. G. Qu, Small 2016, 12, 6200.
- 19a) G. Žerjav, A. Albreht, I. Vovk, A. Pintar, Appl. Catal., A 2020, 598, 117566; b) K. I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol., A 2000, 134, 139.
- 20P. D. Josephy, T. Eling, R. P. Mason, J. Biol. Chem. 1982, 257, 3669.
- 21R. Tian, X. Qiu, P. Yuan, K. Lei, L. Wang, Y. Bai, S. Liu, X. Chen, ACS Appl. Mater. Interfaces 2018, 10, 17018.
- 22a) G. Baffou, Heating Metal Particles Using Light, Cambridge University Press, Cambridge, UK 2017; b) J. Zhou, M. Li, Y. Hou, Z. Luo, Q. Chen, H. Cao, R. Huo, C. Xue, L. Sutrisno, L. Hao, ACS Nano 2018, 12, 2858; c) Y. Huang, Q. Gao, X. Li, Y. Gao, H. Han, Q. Jin, K. Yao, J. Ji, Nano Res. 2020, 13, 2340.
- 23a) P. T. Dong, H. Mohammad, J. Hui, L. G. Leanse, J. Li, L. Liang, T. Dai, M. N. Seleem, J. X. Cheng, Adv. Sci. 2019, 6, 1900030; b) L. Jauffred, A. Samadi, H. Klingberg, P. M. Bendix, L. B. Oddershede, Chem. Rev. 2019, 119, 8087.
- 24G. A. Vinnacombe-Willson, N. Chiang, L. Scarabelli, Y. Hu, L. K. Heidenreich, X. Li, Y. Gong, D. T. Inouye, T. S. Fisher, P. S. Weiss, S. J. Jonas, ACS Cent. Sci. 2020, 6, 2105.
- 25D. Wang, J. Zhou, R. Chen, R. Shi, G. Xia, S. Zhou, Z. Liu, N. Zhang, H. Wang, Z. Guo, Biomaterials 2016, 107, 88.