Constructing a Reinforced and Gradient Solid Electrolyte Interphase on Si Nanoparticles by In-Situ Thiol-Ene Click Reaction for Long Cycling Lithium-Ion Batteries
Liang Zhao
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDanfeng Zhang
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYongfeng Huang
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorKui Lin
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorLikun Chen
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorWei Lv
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Yan-Bing He
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feiyu Kang
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLiang Zhao
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDanfeng Zhang
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYongfeng Huang
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorKui Lin
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorLikun Chen
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorWei Lv
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Yan-Bing He
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feiyu Kang
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P. R. China
Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Constructing a stable solid electrolyte interphase (SEI) on high-specific-capacity silicon (Si) anode is one of the most effective methods to reduce the crack of SEI and improve the cycling performance of Si anode. Herein, the authors construct a reinforced and gradient SEI on Si nanoparticles by an in-situ thiol-ene click reaction. Mercaptopropyl trimethoxysilane (MPTMS) with thiol functional groups (SH) is first grafted on the Si nanoparticles through condensation reaction, which then in-situ covalently bonds with vinylene carbonate (VC) to form a reinforced and uniform SEI on Si nanoparticles. The modified SEI with sufficient elastic LixSiOy can homogenize the stress and strain during the lithiation of Si nanoparticles to reduce their expansion and prevent the SEI from cracking. The Si nanoparticles-graphite blending anode with the reinforced SEI exhibits excellent performance with an initial coulombic efficiency of ≈90%, a capacity of 1053.3 mA h g−1 after 500 cycles and a high capacity of 852.8 mA h g−1 even at a high current density of 3 A g−1. Moreover, the obtained anode shows superior cycling stability under both high loadings and lean electrolyte. The in-situ thiol-ene click reaction is a practical method to construct reinforced SEI on Si nanoparticles for next-generation high-energy-density lithium-ion batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102316-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 2D. An, L. Shen, D. Lei, L. Wang, H. Ye, B. Li, F. Kang, Y.-B. He, J. Energy Chem. 2019, 31, 19.
- 3Y.-Y. Huang, D. Han, Y.-B. He, Q. Yun, M. Liu, X. Qin, B. Li, F. Kang, Electrochim. Acta 2015, 184, 364.
- 4C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
- 5U. Kasavajjula, C. S. Wang, A. J. Appleby, J. Power Sources 2007, 163, 1003.
- 6H. Wu, Y. Cui, Nano Today 2012, 7, 414.
- 7X. Su, Q. L. Wu, J. C. Li, X. C. Xiao, A. Lott, W. Q. Lu, B. W. Sheldon, J. Wu, Adv. Energy Mater. 2014, 4, 1300882.
- 8Q. Yun, X. Qin, Y.-B. He, W. Lv, Y. V. Kaneti, B. Li, Q.-H. Yang, F. Kang, Electrochim. Acta 2016, 211, 982.
- 9X. H. Zhang, D. H. Wang, X. Y. Qiu, Y. J. Ma, D. B. Kong, K. Mullen, X. L. Li, L. J. Zhi, Nat. Commun. 2020, 11, 3826.
- 10D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, J. Y. Lee, Angew. Chem., Int. Ed. 2012, 51, 2409.
- 11H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat. Nanotechnol. 2012, 7, 310.
- 12J. Chang, X. Huang, G. Zhou, S. Cui, P. B. Hallac, J. Jiang, P. T. Hurley, J. Chen, Adv. Mater. 2014, 26, 758.
- 13M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, Y. Cui, Adv. Mater. 2012, 24, 6034.
- 14S. Jeong, J.-P. Lee, M. Ko, G. Kim, S. Park, J. Cho, Nano Lett. 2013, 13, 3403.
- 15M. Ko, S. Chae, J. Ma, N. Kim, H.-W. Lee, Y. Cui, J. Cho, Nat. Energy 2016, 1, 16113.
- 16N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187.
- 17Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Nat. Energy 2016, 1, 15029.
- 18L. Zhao, Y. B. He, C. F. Li, K. L. Jiang, P. Wang, J. B. Ma, H. Y. Xia, F. Y. Chen, Y. B. He, Z. Chen, C. H. You, F. Y. Kang, J. Mater. Chem. A 2019, 7, 24356.
- 19H. Jia, X. Li, J. Song, X. Zhang, L. Luo, Y. He, B. Li, Y. Cai, S. Hu, X. Xiao, C. Wang, K. M. Rosso, R. Yi, R. Patel, J.-G. Zhang, Nat. Commun. 2020, 11, 1474.
- 20H. Shang, Z. Zuo, L. Yu, F. Wang, F. He, Y. Li, Adv. Mater. 2018, 30, 1801459.
- 21Q. Zhang, X. Xiao, W. Zhou, Y.-T. Cheng, M. W. Verbrugge, Adv. Energy Mater. 2015, 5, 1401398.
- 22M. Ashuri, Q. He, L. L. Shaw, Nanoscale 2016, 8, 74.
- 23Y. Gao, R. Yi, Y. C. Li, J. Song, S. Chen, Q. Huang, T. E. Mallouk, D. Wang, J. Am. Chem. Soc. 2017, 139, 17359.
- 24J. K. Lee, K. B. Smith, C. M. Hayner, H. H. Kung, Chem. Commun. 2010, 46, 2025.
- 25Q. Xu, J.-K. Sun, J.-Y. Li, Y.-X. Yin, Y.-G. Guo, Energy Storage Mater. 2018, 12, 54.
- 26G. Li, J.-Y. Li, F.-S. Yue, Q. Xu, T.-T. Zuo, Y.-X. Yin, Y.-G. Guo, Nano Energy 2019, 60, 485.
- 27Q. Ai, P. Zhou, W. Zhai, X. Ma, G. Hou, X. Xu, L. Chen, D. Li, L. Chen, L. Zhang, P. Si, J. Feng, Q. Chi, L. Ci, Diamond Relat. Mater. 2018, 88, 60.
- 28Q. Ai, D. P. Li, J. G. Guo, G. M. Hou, Q. Sun, Q. D. Sun, X. Y. Xu, W. Zhai, L. Zhang, J. K. Feng, P. C. Si, J. Lou, L. J. Ci, Adv. Mater. Interfaces 2019, 6, 1901187.
- 29Q. Ai, Q. Y. Fang, J. Liang, X. Y. Xu, T. S. Zhai, G. H. Gao, H. Guo, G. F. Han, L. J. Ci, J. Lou, Nano Energy 2020, 72, 104657.
- 30J. P. Yang, Y. X. Wang, W. Li, L. J. Wang, Y. C. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H. K. Liu, S. X. Dou, D. Y. Zhao, Adv. Mater. 2017, 29, 1700523.
- 31Z. Chen, C. Wang, J. Lopez, Z. D. Lu, Y. Cui, Z. A. Bao, Adv. Energy Mater. 2015, 5, 1401826.
- 32J. X. Song, M. J. Zhou, R. Yi, T. Xu, M. L. Gordin, D. H. Tang, Z. X. Yu, M. Regula, D. H. Wang, Adv. Funct. Mater. 2014, 24, 5904.
- 33L. B. Chen, K. Wang, X. H. Xie, J. Y. Xie, Electrochem. Solid-State Lett. 2006, 9, A512.
- 34A. L. Michan, B. S. Parirnalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, B. L. Lucht, Chem. Mater. 2016, 28, 8149.
- 35C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater. 2015, 27, 2591.
- 36H. P. Jia, L. F. Zou, P. Y. Gao, X. Cao, W. G. Zhao, Y. He, M. H. Engelhard, S. D. Burton, H. Wang, X. D. Ren, Q. Y. Li, R. Yi, X. Zhang, C. M. Wang, Z. J. Xu, X. L. Li, J. G. Zhang, W. Xu, Adv. Energy Mater. 2019, 9, 1900784.
- 37J. Chen, X. L. Fan, Q. Li, H. B. Yang, M. R. Khoshi, Y. B. Xu, S. Hwang, L. Chen, X. Ji, C. Y. Yang, H. X. He, C. M. Wang, E. Garfunkel, D. Su, O. Borodin, C. S. Wang, Nat. Energy 2020, 5, 386.
- 38D. M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S. C. Kim, S. S. Han, V. Bhat, K. H. Oh, D. A. Buttry, S. H. Lee, Nat. Commun. 2015, 6, 6230.
- 39P. Parikh, M. Sina, A. Banerjee, X. F. Wang, M. S. D'Souza, J. M. Doux, E. A. Wu, O. Y. Trieu, Y. B. Gong, Q. Zhou, K. Snyder, Y. S. Meng, Chem. Mater. 2019, 31, 2535.
- 40S. K. Heiskanen, J. Kim, B. L. Lucht, Joule 2019, 3, 2322.