A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte
Zhengying Wang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYue Xu
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorJian Peng
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorMingyang Ou
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorPeng Wei
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Chun Fang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorQing Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorJiang Huang
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Jiantao Han
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYunhui Huang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorZhengying Wang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYue Xu
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorJian Peng
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorMingyang Ou
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorPeng Wei
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Chun Fang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorQing Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorJiang Huang
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Jiantao Han
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYunhui Huang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorAbstract
Taking into the consideration safety, environmental impact, and economic issue, the construction of aqueous batteries based on aqueous electrolyte has become an indispensable technical option for large-scale electrical energy storage. The narrow electrochemical window is the main problem of conventional aqueous electrolyte. Here, an economical room-temperature inorganic hydrated molten salt (RTMS) electrolyte with a large electrochemical stability window of 3.1 V is proposed. Compared with organic fluorinated molten salts, RTMS is composed of lithium nitrate hydrate and sodium nitrate with much lower cost. Based on the RTMS electrolyte, a hybrid Li/Na-ion full battery is fabricated from cobalt hexacyanoferrate cathode (NaCoHCF) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) anode. The full cell with the RTMS electrolyte exhibits a fantastic performance with high capacity of 139 mAh g−1 at 1 C, 90 mAh g−1 at 20 C, and capacity retention of 94.7% over 500 cycles at 3 C. The excellent performances are contributed to the unique properties of RTMS with a large electrochemical window, solvated H2O free and high mobility of Li+, which exhibits excellent Li-ions insertion and extraction capacity of NaCoHCF. This RTMS cell provides a new economic choice for large-scale energy storage.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202101650-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Nat. Energy 2016, 1, 16129.
- 2L. Hu, K. Xu, Proc. Natl. Acad. Sci. USA 2014, 111, 3205.
- 3J. Y. Luo, W. J. Cui, P. He, Y. Y. Xia, Nat. Chem. 2010, 2, 760.
- 4L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science (New York, N.Y.) 2015, 350, 938.
- 5L. Suo, F. Han, X. Fan, H. Liu, K. Xu, C. Wang, J. Mater. Chem. A 2016, 4, 6639.
- 6F. Wang, Y. Lin, L. Suo, X. Fan, T. Gao, C. Yang, F. Han, Y. Qi, K. Xu, C. Wang, Energy Environ. Sci. 2016, 9, 3666.
- 7F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, W. Sun, C. Wang, Adv. Energy Mater. 2017, 7, 1600922.
- 8L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu, C. Wang, Angew. Chem., Int. Ed. 2016, 55, 7136.
- 9C. Wessells, R. Ruffο, R. A. Huggins, Y. Cui, Electrochem. Solid-State Lett. 2010, 13, A59.
- 10L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, C. Yang, Y.-S. Hu, K. Xu, C. Wang, Adv. Energy Mater. 2017, 7, 1701189.
- 11C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun, T. Gao, X. Fan, S. Hou, Z. Ma, K. Amine, K. Xu, C. Wang, Proc. Natl. Acad. Sci. USA 2017, 114, 6197.
- 12R. S. Kuhnel, D. Reber, A. Remhof, R. Figi, D. Bleiner, C. Battaglia, Chem. Commun. 2016, 52, 10435.
- 13J. X. Zheng, G. Y. Tan, P. Shan, T. C. Liu, J. T. Hu, Y. C. Feng, L. Y. Yang, M. J. Zhang, Z. H. Chen, Y. Lin, J. Lu, J. C. Neuefeind, Y. Ren, K. Amine, L. W. Wang, K. Xu, F. Pan, Chem 2018, 4, 2872.
- 14X. Wu, D. P. Leonard, X. Ji, Chem. Mater. 2017, 29, 5031.
- 15X. Wu, C. Wu, C. Wei, L. Hu, J. Qian, Y. Cao, X. Ai, J. Wang, H. Yang, ACS Appl. Mater. Interfaces 2016, 8, 5393.
- 16X. Guo, Z. Wang, Z. Deng, X. Li, B. Wang, X. Chen, S. P. Ong, Chem. Mater. 2019, 31, 5933.
- 17J. Peng, M. Ou, H. Yi, X. Sun, Y. Zhang, B. Zhang, Y. Ding, F. Wang, S. Gu, C. A. López, W. Zhang, Y. Liu, J. Fang, P. Wei, Y. Li, L. Miao, J. Jiang, C. Fang, Q. Li, M. T. Fernández-Díaz, J. A. Alonso, S. Chou, J. Han, Energy Environ. Sci. 2021, 14, 3130.
- 18L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 2019, 4, 495.
- 19X. Sun, V. Duffort, L. F. Nazar, Adv. Sci. 2016, 3, 1600044.
- 20J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, H. Yang, Adv. Energy Mater. 2018, 8, 1870079.
- 21A. O. Tirler, I. Persson, T. S. Hofer, B. M. Rode, Inorg. Chem. 2015, 54, 10335.
- 22C. D. Wessells, R. A. Huggins, Y. Cui, Nat. Commun. 2011, 2, 550.
- 23C. D. Wessells, S. V. Peddada, R. A. Huggins, Y. Cui, Nano Lett. 2011, 11, 5421.
- 24S. Gates-Rector, T. Blanton, Powder Diffraction 2019, 34, 352.
- 25J. Shamblin, M. Feygenson, J. Neuefeind, C. L. Tracy, F. X. Zhang, S. Finkeldei, D. Bosbach, H. D. Zhou, R. C. Ewing, M. Lang, Nat. Mater. 2016, 15, 507.
- 26J. Peng, J. Wang, H. Yi, W. Hu, Y. Yu, J. Yin, Y. Shen, Y. Liu, J. Luo, Y. Xu, P. Wei, Y. Li, Y. Jin, Y. Ding, L. Miao, J. Jiang, J. Han, Y. Huang, Adv. Energy Mater. 2018, 8, 1702856.
- 27J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J. J. Lee, X. Q. Yang, G. Henkelman, J. B. Goodenough, J. Am. Chem. Soc. 2015, 137, 2658.
- 28Y. Yang, E. Liu, X. Yan, C. Ma, W. Wen, X.-Z. Liao, Z.-F. Ma, J. Electrochem. Soc. 2016, 163, A2117.
- 29Y. Xu, J. Wan, L. Huang, M. Ou, C. Fan, P. Wei, J. Peng, Y. Liu, Y. Qiu, X. Sun, C. Fang, Q. Li, J. Han, Y. Huang, J. A. Alonso, Y. Zhao, Adv. Energy Mater. 2019, 9, 1803158.
- 30J. W. Nai, J. T. Zhang, X. W. Lou, Chem 2018, 4, 1967.
- 31B. F. Baggio, C. Vicente, S. Pelegrini, C. C. Pla Cid, I. S. Brandt, M. A. Tumelero, A. A. Pasa, Materials 2019, 12, 1103.
- 32J. Wu, J. Song, K. Dai, Z. Zhuo, L. A. Wray, G. Liu, Z. X. Shen, R. Zeng, Y. Lu, W. Yang, J. Am. Chem. Soc. 2017, 139, 18358.
- 33M. Cammarata, S. Zerdane, L. Balducci, G. Azzolina, S. Mazerat, C. Exertier, M. Trabuco, M. Levantino, R. Alonso-Mori, J. M. Glownia, S. Song, L. Catala, T. Mallah, S. F. Matar, E. Collet, Nat. Chem. 2021, 13, 10.
- 34Y. Meng, H. Wu, Y. Zhang, Z. Wei, J. Mater. Chem. A 2014, 2, 10842.
- 35H. Wu, S. A. Shevlin, Q. Meng, W. Guo, Y. Meng, K. Lu, Z. Wei, Z. Guo, Adv. Mater. 2014, 26, 3338.
- 36M.-H. Jung, R. V. Ghorpade, J. Electrochem. Soc. 2018, 165, A2476.
- 37K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Small Methods 2019, 3, 1800220.
- 38H. Gao, J. B. Goodenough, Angew. Chem. Int. Ed. 2016, 55, 12768.
- 39X.-y. Wu, M.-y. Sun, Y.-f. Shen, J.-f. Qian, Y.-l. Cao, X.-p. Ai, H.-x. Yang, ChemSusChem 2014, 7, 407.
- 40X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai, H. Yang, ChemNanoMat 2015, 1, 188.
- 41L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, C. Yang, Y.-S. Hu, K. Xu, C. Wang, Adv. Energy Mater. 2017, 7, 1701189.
- 42M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. McDowell, R. A. Huggins, M. F. Toney, Y. Cui, Nat. Commun. 2014, 5, 3007.
- 43Z. Hou, X. Li, J. Liang, Y. Zhu, Y. Qian, J. Mater. Chem. A 2015, 3, 1400.
- 44A. J. Fernández-Ropero, D. Saurel, B. Acebedo, T. Rojo, M. Casas-Cabanas, J. Power Sources 2015, 291, 40.
- 45B. W. Zhang, T. T. Zhu, M. Y. Ou, N. Rowell, H. S. Fan, J. T. Han, L. Tan, M. T. Dove, Y. Ren, X. B. Zuo, Nat. Commun. 2018, 9, 2499.