Single-Nanoparticle Coulometry Method with High Sensitivity and High Throughput to Study the Electrochemical Activity and Oscillation of Single Nanocatalysts
Mohan Lin
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYingke Zhou
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
School of Materials Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorLingzheng Bu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorChuang Bai
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorMuhammad Tariq
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorHuihui Wang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorJinli Han
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorXiaoqing Huang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Xiaochun Zhou
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
E-mail: [email protected]
Search for more papers by this authorMohan Lin
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorYingke Zhou
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
School of Materials Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorLingzheng Bu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorChuang Bai
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorMuhammad Tariq
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorHuihui Wang
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorJinli Han
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorXiaoqing Huang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Xiaochun Zhou
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123 China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
E-mail: [email protected]
Search for more papers by this authorAbstract
To explore nanocatalysts with high electro-catalytic performance and less loading of precious metals, efforts have been made to develop electrochemical methods with high spatial resolution at the single nanoparticle level. Herein, a highly sensitive single-nanoparticle coulometry method is successfully developed to study the electrochemical activity and oscillation of single PtTe nanocatalysts. Based on microbattery reactions involving the formic acid electro-oxidation and the deposition of Ag on the single PtTe nanocatalyst surface, this method enables the transition from the undetectable sub-fA electric signal of the formic acid electro-oxidation into strong localized surface plasmon resonance scattering signal of Ag detected by dark-field microscopy. The lowest limiting current for a single nanocatalyst is found to be as low as 25.8 aA. Different trends of activity versus the formic acid concentration and types of activity of the single nanocatalyst have been discovered. Unveiled frequency-amplitude graph shows that the two electrochemical oscillation modes of low frequency with high amplitude and vice versa coexist in a single PtTe nanocatalyst, indicating the abundantly smooth surfaces and defects of nanocatalysts. This conducted study will open up the new avenue for further behavioral and mechanistic investigation of more types of nanocatalysts in the electrochemistry community.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202007302-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Energy Environ. Sci. 2011, 4, 2736; b) Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Chem. Commun. 2003, 3, 394; c) Y. Zhu, Y. Kang, Z. Zou, Q. Zhou, J. Zheng, B. Xia, H. Yang, Electrochem. Commun. 2008, 10, 802.
- 2B. O'Regan, M. Grätzel, Nature 1991, 353, 737.
- 3D. Chen, J. Li, Surf. Sci. Rep. 2006, 61, 445.
- 4J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605.
- 5a) W. Wang, Chem. Soc. Rev. 2018, 47, 2485; b) M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293; c) C. Costentin, C. Di Giovanni, M. Giraud, J.-M. Savéant, C. Tard, Nat. Mater. 2017, 16, 1016.
- 6a) Y. Wang, Z. Cao, Q. Yang, W. Guo, B. Su, Anal. Chim. Acta 2019, 1074, 1; b) S. M. Oja, Y. Fan, C. M. Armstrong, P. Defnet, B. Zhang, Anal. Chem. 2016, 88, 414.
- 7a) D. A. Robinson, Y. Liu, M. A. Edwards, N. J. Vitti, S. M. Oja, B. Zhang, H. S. White, J. Am. Chem. Soc. 2017, 139, 16923; b) T. J. Anderson, B. Zhang, Acc. Chem. Res. 2016, 49, 2625; c) Y.-Y. Peng, R.-C. Qian, M. E. Hafez, Y.-T. Long, ChemElectroChem 2017, 4, 977; d) T. Kai, C. G. Zoski, A. J. Bard, Chem. Commun. 2018, 54, 1934; e) N. Ebejer, A. G. Güell, S. C. S. Lai, K. McKelvey, M. E. Snowden, P. R. Unwin, Annu. Rev. Anal. Chem. 2013, 6, 329; f) C. L. Bentley, M. Kang, P. R. Unwin, Curr. Opin. Electrochem. 2017, 6, 23.
- 8a) V. Brasiliense, A. N. Patel, A. Martinez-Marrades, J. Shi, Y. Chen, C. Combellas, G. Tessier, F. Kanoufi, J. Am. Chem. Soc. 2016, 138, 3478; b) P. Saha, J. W. Hill, J. D. Walmsley, C. M. Hill, Anal. Chem. 2018, 90, 12832; c) D. Jiang, Y. Jiang, Z. Li, T. Liu, X. Wo, Y. Fang, N. Tao, W. Wang, H.-Y. Chen, J. Am. Chem. Soc. 2017, 139, 186.
- 9a) W. Zhang, Y. Xu, X. Zou, P. Wang, Biosens. Bioelectron. 2017, 97, 267; b) M. Carminati, G. Ferrari, D. Bianchi, M. Sampietro, Electrochim. Acta 2013, 112, 950.
- 10F.-R. F. Fan, A. J. Bard, Science 1997, 277, 1791.
- 11a) F. T. Patrice, K. Qiu, Y. L. Ying, Y. T. Long, Annu. Rev. Anal. Chem. 2019, 12, 347;
b) C. M. Hill, S. Pan, J. Am. Chem. Soc. 2013, 135, 17250;
c) J. G. Smith, Q. Yang, P. K. Jain, Angew. Chem., Int. Ed. 2014, 126, 2911;
10.1002/ange.201309307 Google Scholard) Y. Fang, W. Wang, X. Wo, Y. Luo, S. Yin, Y. Wang, X. Shan, N. Tao, J. Am. Chem. Soc. 2014, 136, 12584.
- 12a) J. B. Sambur, T.-Y. Chen, E. Choudhary, G. Chen, E. J. Nissen, E. M. Thomas, N. Zou, P. Chen, Nature 2016, 530, 77; b) J. Lu, Y. Fan, M. D. Howard, J. C. Vaughan, B. Zhang, J. Am. Chem. Soc. 2017, 139, 2964; c) H. Su, Y. Fang, F. Chen, W. Wang, Chem. Sci. 2018, 9, 1448.
- 13a) S. M. Stranahan, K. A. Willets, Nano Lett. 2010, 10, 3777; b) A. J. Wilson, K. A. Willets, Nano Lett. 2014, 14, 939.
- 14S. Li, Y. Du, T. He, Y. Shen, C. Bai, F. Ning, X. Hu, W. Wang, S. Xi, X. Zhou, J. Am. Chem. Soc. 2017, 139, 14277.
- 15a) J. F. Lemineur, J. M. Noel, D. Ausserre, C. Combellas, F. Kanoufi, Angew. Chem., Int. Ed. 2018, 57, 11998; b) L. X. Qin, Y. Li, D. W. Li, C. Jing, B. Q. Chen, W. Ma, A. Heyman, O. Shoseyov, I. Willner, H. Tian, Y. T. Long, Angew. Chem., Int. Ed. 2012, 51, 140; c) M. Chirea, S. S. Collins, X. Wei, P. Mulvaney, J. Phys. Chem. Lett. 2014, 5, 4331.
- 16A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, S. Link, Nano Lett. 2010, 10, 1398.
- 17a) T. Liu, S. Liu, W. Jiang, W. Wang, ACS Nano 2019, 13, 6279; b) V. Brasiliense, J. Clausmeyer, P. Berto, G. Tessier, C. Combellas, W. Schuhmann, F. Kanoufi, Anal. Chem. 2018, 90, 7341; c) V. Sundaresan, J. W. Monaghan, K. A. Willets, J. Phys. Chem. C 2018, 122, 3138.
- 18J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Phys. Rev. Lett. 2004, 93, 156801.
- 19a) S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, S. Sun, J. Am. Chem. Soc. 2014, 136, 7734; b) P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem. 2010, 2, 454.
- 20a) D. Gao, S. Yang, L. Xi, M. Risch, L. Song, Y. Lv, C. Li, C. Li, G. Chen, Chem. Mater. 2020, 32, 1581; b) C. Wang, L. Zhang, H. Yang, J. Pan, J. Liu, C. Dotse, Y. Luan, R. Gao, C. Lin, J. Zhang, J. P. Kilcrease, X. Wen, S. Zou, J. Fang, Nano Lett. 2017, 17, 2204.
- 21L. Bu, B. Huang, Y. Zhu, F. Ning, X. Zhou, X. Huang, CCS Chem. 2020, 2, 401.
- 22ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), presented at International Conference on Harmonization (ICH), European Medicines Agency, Geneva, Switzerland, 2005.
- 23a) M. Ghahraman Afshar, G. A. Crespo, E. Bakker, Anal. Chem. 2015, 87, 10125; b) T. Asakai, Y. Kakihara, Y. Kozuka, S. Hossaka, M. Murayama, T. Tanaka, Anal. Chim. Acta 2006, 567, 269.
- 24a) Y. Mukouyama, M. Kikuchi, G. Samjeské, M. Osawa, H. Okamoto, J. Phys. Chem. B 2006, 110, 11912; b) A. Mota-Lima, D. R. Silva, L. H. S. Gasparotto, E. R. Gonzalez, Electrochim. Acta 2017, 235, 135; c) J. Lee, P. Strasser, M. Eiswirth, G. Ertl, Electrochim. Acta 2001, 47, 501; d) G. Cabello, R. A. Davoglio, F. W. Hartl, J. F. Marco, E. C. Pereira, S. R. Biaggio, H. Varela, A. Cuesta, Electrochim. Acta 2017, 224, 56; e) I. Z. Kiss, N. Munjal, R. S. Martin, Electrochim. Acta 2009, 55, 395; f) N. Perini, B. C. Batista, A. C. Angelo, I. R. Epstein, H. Varela, ChemPhysChem 2014, 15, 1753; g) N. Perini, E. Sitta, A. C. D. Angelo, H. Varela, Catal. Commun. 2013, 30, 23.
- 25J. Lee, J. Christoph, P. Strasser, M. Eiswirth, G. Ertl, Phys. Chem. Chem. Phys. 2003, 5, 935.
- 26M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss. 2009, 140, 363.
- 27H. Varela, M. V. F. Delmonde, A. A. Zülke, in Electrocatalysts for Low Temperature Fuel Cells (Eds: T. Maiyalagan, V. S. Sagi, Wiley-VCH, Weinheim, Germany 2017, Ch. 5.
- 28a) M. Hachkar, B. Beden, C. Lamy, J. Electroanal. Chem. Interfacial Electrochem. 1990, 287, 81; b) U. Krewer, T. Vidakovic-Koch, L. Rihko-Struckmann, ChemPhysChem 2011, 12, 2518.
- 29a) R. Parsons, T. VanderNoot, J. Electroanal. Chem. Interfacial Electrochem. 1988, 257, 9; b) Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, J. Am. Chem. Soc. 2003, 125, 3680; c) N. M. Marković, P. N. Ross, Surf. Sci. Rep. 2002, 45, 117.
- 30a) W. Xu, J. S. Kong, Y. T. Yeh, P. Chen, Nat. Mater. 2008, 7, 992; b) K. S. Han, G. Liu, X. Zhou, R. E. Medina, P. Chen, Nano Lett. 2012, 12, 1253; c) R. Ye, X. Mao, X. Sun, P. Chen, ACS Catal. 2019, 9, 1985; d) T. Chen, S. Chen, P. Song, Y. Zhang, H. Su, W. Xu, J. Zeng, ACS Catal. 2017, 7, 2967; e) X. Zhou, W. Xu, G. Liu, D. Panda, P. Chen, J. Am. Chem. Soc. 2010, 132, 138.
- 31B. A. F. Previdello, P. S. Fernández, G. Tremiliosi-Filho, H. Varela, Phys. Chem. Chem. Phys. 2018, 20, 5674.
- 32a) T. Iwasita, X. Xia, E. Herrero, H.-D. Liess, Langmuir 1996, 12, 4260; b) S. G. Sun, Y. Lin, N. H. Li, J. Q. Mu, J. Electroanal. Chem. 1994, 370, 273.
- 33F. Raspel, M. Eiswirth, J. Phys. Chem. 1994, 98, 7613.
- 34P. Strasser, M. Lübke, F. Raspel, M. Eiswirth, G. Ertl, J. Chem. Phys. 1997, 107, 979.
- 35F. W. Hartl, H. Varela, ChemistrySelect 2017, 2, 8679.
- 36M. A. Nascimento, R. Nagao, M. Eiswirth, H. Varela, J. Chem. Phys. 2014, 141, 234701.
- 37a) S. P. E. Smith, K. F. Ben-Dor, H. D. Abruña, Langmuir 2000, 16, 787; b) M. D. Maciá, E. Herrero, J. M. Feliu, Electrochim. Acta 2002, 47, 3653.
- 38a) V. Del Colle, P. B. Perroni, J. M. Feliu, G. Tremiliosi-Filho, H. Varela, J. Phys. Chem. C 2020, 124, 10993; b) V. Del Colle, H. Varela, G. Tremiliosi-Filho, Curr. Opin. Electrochem. 2020, 23, 123.