An Acoustic Platform for Single-Cell, High-Throughput Measurements of the Viscoelastic Properties of Cells
Corresponding Author
Valentin Romanov
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Giulia Silvani
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuiyu Zhu
Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW, 2007 Australia
Search for more papers by this authorCharles D. Cox
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010 Australia
Search for more papers by this authorBoris Martinac
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010 Australia
Search for more papers by this authorCorresponding Author
Valentin Romanov
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Giulia Silvani
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuiyu Zhu
Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW, 2007 Australia
Search for more papers by this authorCharles D. Cox
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010 Australia
Search for more papers by this authorBoris Martinac
Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010 Australia
St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010 Australia
Search for more papers by this authorAbstract
Cellular processes including adhesion, migration, and differentiation are governed by the distinct mechanical properties of each cell. Importantly, the mechanical properties of individual cells can vary depending on local physical and biochemical cues in a time-dependent manner resulting in significant inter-cell heterogeneity. While several different methods have been developed to interrogate the mechanical properties of single cells, throughput to capture this heterogeneity remains an issue. Here, single-cell, high-throughput characterization of adherent cells is demonstrated using acoustic force spectroscopy (AFS). AFS works by simultaneously, acoustically driving tens to hundreds of silica beads attached to cells away from the cell surface, allowing the user to measure the stiffness of adherent cells under multiple experimental conditions. It is shown that cells undergo marked changes in viscoelasticity as a function of temperature, by altering the temperature within the AFS microfluidic circuit between 21 and 37 °C. In addition, quantitative differences in cells exposed to different pharmacological treatments specifically targeting the membrane–cytoskeleton interface are shown. Further, the high-throughput format of the AFS is utilized to rapidly probe, in excess of 1000 cells, three different cell lines expressing different levels of a mechanosensitive protein, Piezo1, demonstrating the ability to differentiate between cells based on protein expression levels.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202005759-sup-0001-SuppMat.pdf788.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Huang, R. D. Kamm, R. T. Lee, Am. J. Physiol.: Cell Physiol. 2004, 287, C1.
- 2M. Dao, C. T. Lim, S. Suresh, J. Mech. Phys. Solids 2003, 51, 2259.
- 3G. Y. H. Lee, C. T. Lim, Trends Biotechnol. 2007, 25, 111.
- 4J. M. Tse, G. Cheng, J. A. Tyrrell, S. A. Wilcox-Adelman, Y. Boucher, R. K. Jain, L. L. Munn, Proc. Natl. Acad. Sci. USA 2012, 109, 911.
- 5R. Krishnan, C. Y. Park, Y.-C. Lin, J. Mead, R. T. Jaspers, X. Trepat, G. Lenormand, D. Tambe, A. V. Smolensky, A. H. Knoll, J. P. Butler, J. J. Fredberg, PLoS One 2009, 4, e5486.
- 6P.-H. Wu, D. R.-B. Aroush, A. Asnacios, W.-C. Chen, M. E. Dokukin, B. L. Doss, P. Durand-Smet, A. Ekpenyong, J. Guck, N. V. Guz, P. A. Janmey, J. S. H. Lee, N. M. Moore, A. Ott, Y.-C. Poh, R. Ros, M. Sander, I. Sokolov, J. R. Staunton, N. Wang, G. Whyte, D. A. Wirtz, Nat. Methods 2018, 15, 491.
- 7E. M. Darling, D. Di Carlo, Annu. Rev. Biomed. Eng. 2015, 17, 35.
- 8F. Ziemann, J. Rädler, E. Sackmann, Biophys. J. 1994, 66, 2210.
- 9C. A. Putman, K. O. van der Werf, B. G. de Grooth, N. F. van Hulst, J. Greve, Biophys. J. 1994, 67, 1749.
- 10W. R. Trickey, G. M. Lee, F. Guilak, J. Orthop. Res. 2000, 18, 891.
- 11T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, S. C. Kuo, Phys. Rev. Lett. 1997, 79, 3282.
- 12D. Kamsma, P. Bochet, F. Oswald, N. Alblas, S. Goyard, G. J. L. Wuite, E. J. G. Peterman, T. Rose, Cell Rep. 2018, 24, 3008.
- 13R. Sorkin, G. Bergamaschi, D. Kamsma, G. Brand, E. Dekel, Y. Ofir-Birin, A. Rudik, M. Gironella, F. Ritort, N. Regev-Rudzki, W. H. Roos, G. J. L. Wuite, Mol. Biol. Cell 2018, 29, 2005.
- 14A. Nguyen, M. Brandt, T. Betz, bioRxiv 2020, https://doi.org/10.1101/2020.07.02.185330
- 15B. Martinac, Y. A. Nikolaev, G. Silvani, N. Bavi, V. Romanov, Y. Nakayama, A. D. Martinac, P. Rohde, O. Bavi, C. D. Cox, in Current Topics in Membranes, Vol. 86, (Eds: I. Levitan, A. Trache), Academic Press, San Diego, CA 2020, pp. 83–141.
- 16N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, B. Anvari, Soft Matter 2012, 8, 8350.
- 17J. R. Lange, J. Steinwachs, T. Kolb, L. A. Lautscham, I. Harder, G. Whyte, B. Fabry, Biophys. J. 2015, 109, 26.
- 18F. M. Hecht, J. Rheinlaender, N. Schierbaum, W. H. Goldmann, B. Fabry, T. E. Schäffer, Soft Matter 2015, 11, 4584.
- 19G. Sitters, D. Kamsma, G. Thalhammer, M. Ritsch-Marte, E. J. G. Peterman, G. J. L. Wuite, Nat. Methods 2015, 12, 47.
- 20D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, CRC Press, Boca Raton, FL 1995.
- 21M. S. Croughan, E. S. Sayre, D. I. C. Wang, Biotechnol. Bioeng. 1989, 33, 862.
- 22C. Wang, H. Lu, M. A. Schwartz, J. Biomech. 2012, 45, 1212.
- 23P.-H. Wu, D. R.-B. Aroush, A. Asnacios, W.-C. Chen, M. E. Dokukin, B. L. Doss, P. Durand, A. Ekpenyong, J. Guck, N. V. Guz, P. A. Janmey, J. S. H. Lee, N. M. Moore, A. Ott, Y.-C. Poh, R. Ros, M. Sander, I. Sokolov, J. R. Staunton, N. Wang, G. Whyte, D. Wirtz, Nat. Methods 2018, 15, 491.
- 24P. Kollmannsberger, C. T. Mierke, B. Fabry, Soft Matter 2011, 7, 3127.
- 25S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, I. A. T. Schaap, PLoS One 2012, 7, e45297.
- 26F. Ndoye, M. S. Yousafzai, G. Coceano, S. Bonin, G. Scoles, O. Ka, J. Niemela, D. Cojoc, Int. J. Optomechatronics 2016, 10, 53.
- 27M. S. Yousafzai, F. Ndoye, G. Coceano, J. Niemela, S. Bonin, G. Scoles, D. Cojoc, Opt. Lasers Eng. 2016, 76, 27.
- 28S. M. A. Haghparast, T. Kihara, J. Miyake, PeerJ 2015, 3, e1131.
- 29M. Li, L. Liu, X. Xiao, N. Xi, Y. Wang, J. Biol. Phys. 2016, 42, 551.
- 30N. Khatibzadeh, A. A. Spector, W. E. Brownell, B. Anvari, PLoS One 2013, 8, e57147.
- 31S. A. Ermilov, D. R. Murdock, F. Qian, W. E. Brownell, B. Anvari, J. Biomech. 2007, 40, 476.
- 32I. Acerbi, T. Luque, A. Giménez, M. Puig, N. Reguart, R. Farré, D. Navajas, J. Alcaraz, PLoS One 2012, 7, e32261.
- 33B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, J. J. Fredberg, Phys. Rev. Lett. 2001, 87, 148102.
- 34G. Massiera, K. M. Van Citters, P. L. Biancaniello, J. C. Crocker, Biophys. J. 2007, 93, 3703.
- 35K. C. Neuman, A. Nagy, Nat. Methods 2008, 5, 491.
- 36R. Sunyer, X. Trepat, J. J. Fredberg, R. Farré, D. Navajas, Phys. Biol. 2009, 6, 025009.
- 37J. P. Sunnerberg, P. Moore, E. Spedden, D. L. Kaplan, C. Staii, Langmuir 2019, 35, 10965.
- 38C. J. Chan, G. Whyte, L. Boyde, G. Salbreux, J. Guck, Interface Focus 2014, 4, 20130069.
- 39E. Spedden, D. L. Kaplan, C. Staii, Phys. Biol. 2013, 10, 056002.
- 40P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, J. J. Fredberg, Nat. Mater. 2005, 4, 557.
- 41N. E. Vlahakis, M. A. Schroeder, R. E. Pagano, R. D. Hubmayr, Am. J. Respir. Crit. Care Med. 2002, 166, 1282.
- 42R. W. Stroetz, N. E. Vlahakis, B. J. Walters, M. A. Schroeder, R. D. Hubmayr, J. Appl. Physiol. 2001, 90, 2361.
- 43L. Deng, N. J. Fairbank, D. J. Cole, J. J. Fredberg, G. N. Maksym, J. Appl. Physiol. 2005, 99, 634.
- 44J. M. Maloney, E. Lehnhardt, A. F. Long, K. J. Van Vliet, Biophys. J. 2013, 105, 1767.
- 45P. Kollmannsberger, B. Fabry, Annu. Rev. Mater. Res. 2011, 41, 75.
- 46B. A. Smith, B. Tolloczko, J. G. Martin, P. Grütter, Biophys. J. 2005, 88, 2994.
- 47B. M. Gaub, D. J. Müller, Nano Lett. 2017, 17, 2064.
- 48H. M. Nussenzveig, Eur. Biophys. J. 2018, 47, 499.
- 49Z. Li, B. Anvari, M. Takashima, P. Brecht, J. H. Torres, W. E. Brownell, Biophys. J. 2002, 82, 1386.
- 50M. Balland, A. Richert, F. Gallet, Eur. Biophys. J. 2005, 34, 255.
- 51J. Saarikangas, H. Zhao, P. Lappalainen, Physiol. Rev. 2010, 90, 259.
- 52W. R. Trickey, T. P. Vail, F. Guilak, J. Orthop. Res. 2004, 22, 131.
- 53N. H. Reynolds, W. Ronan, E. P. Dowling, P. Owens, R. M. McMeeking, J. P. McGarry, Biomaterials 2014, 35, 4015.
- 54M. Sato, D. P. Theret, L. T. Wheeler, N. Ohshima, R. M. Nerem, J. Biomech. Eng. 1990, 112, 263.
- 55S. C. Tan, W. X. Pan, G. Ma, N. Cai, K. W. Leong, K. Liao, BMC Cell Biol. 2008, 9, 40.
- 56N. Nijenhuis, X. Zhao, A. Carisey, C. Ballestrem, B. Derby, Biophys. J. 2014, 107, 1502.
- 57S. Chien, K. L. Sung, Biophys. J. 1984, 46, 383.
- 58Y. Wu, T. Cheng, Q. Chen, B. Gao, A. G. Stewart, P. V. S. Lee, Biomicrofluidics 2020, 14, 014114.
- 59C. Rotsch, M. Radmacher, Biophys. J. 2000, 78, 520.
- 60J. M. Maloney, K. J. V. Vliet, Soft Matter 2014, 10, 8031.
- 61P. Ridone, M. Vassalli, B. Martinac, Biophys. Rev. 2019, 11, 795.
- 62J. Li, B. Hou, S. Tumova, K. Muraki, A. Bruns, M. J. Ludlow, A. Sedo, A. J. Hyman, L. McKeown, R. S. Young, N. Y. Yuldasheva, Y. Majeed, L. A. Wilson, B. Rode, M. A. Bailey, H. R. Kim, Z. Fu, D. A. L. Carter, J. Bilton, H. Imrie, P. Ajuh, T. N. Dear, R. M. Cubbon, M. T. Kearney, K. R. Prasad, P. C. Evans, J. F. X. Ainscough, D. J. Beech, Nature 2014, 515, 279.
- 63Q. Zhao, H. Zhou, X. Li, B. Xiao, FEBS J. 2019, 286, 2461.
- 64C. D. Cox, N. Bavi, B. Martinac, Cell Rep. 2019, 29, 1.
- 65X. Chen, S. Wanggou, A. Bodalia, M. Zhu, W. Dong, J. J. Fan, W. C. Yin, H.-K. Min, M. Hu, D. Draghici, W. Dou, F. Li, F. J. Coutinho, H. Whetstone, M. M. Kushida, P. B. Dirks, Y. Song, C. Hui, Y. Sun, L.-Y. Wang, X. Li, X. Huang, Neuron 2018, 100, 799.e7.
- 66D. Kamsma, R. Creyghton, G. Sitters, G. J. L. Wuite, E. J. G. Peterman, Methods 2016, 105, 26.
- 67N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, H. M. Nussenzveig, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2007, 75, 021914.
- 68E. Schäffer, S. F. Nørrelykke, J. Howard, Langmuir 2007, 23, 3654.
- 69A. Einstein, Investigations on the Theory of the Brownian Movement, Courier Corporation, Chelmsford, MA 1956.
- 70G. Lenormand, E. Millet, B. Fabry, J. P. Butler, J. J. Fredberg, J. R. Soc., Interface 2004, 1, 91.
- 71C. D. Cox, C. Bae, L. Ziegler, S. Hartley, V. Nikolova-Krstevski, P. R. Rohde, C.-A. Ng, F. Sachs, P. A. Gottlieb, B. Martinac, Nat. Commun. 2016, 7, 10366.
- 72J. Ho, T. Tumkaya, S. Aryal, H. Choi, A. Claridge-Chang, Nat. Methods 2019, 16, 565.
- 73D. J. Benjamin, J. O. Berger, M. Johannesson, B. A. Nosek, E.-J. Wagenmakers, R. Berk, K. A. Bollen, B. Brembs, L. Brown, C. Camerer, D. Cesarini, C. D. Chambers, M. Clyde, T. D. Cook, P. De Boeck, Z. Dienes, A. Dreber, K. Easwaran, C. Efferson, E. Fehr, F. Fidler, A. P. Field, M. Forster, E. I. George, R. Gonzalez, S. Goodman, E. Green, D. P. Green, A. G. Greenwald, J. D. Hadfield, L. V. Hedges, L. Held, T. H. Ho, H. Hoijtink, D. J. Hruschka, K. Imai, G. Imbens, J. P. A. Ioannidis, M. Jeon, J. H. Jones, M. Kirchler, D. Laibson, J. List, R. Little, A. Lupia, E. Machery, S. E. Maxwell, M. McCarthy, D. A. Moore, S. L. Morgan, M. Munafó, S. Nakagawa, B. Nyhan, T. H. Parker, L. Pericchi, M. Perugini, J. Rouder, J. Rousseau, V. Savalei, F. D. Schönbrodt, T. Sellke, B. Sinclair, D. Tingley, T. Van Zandt, S. Vazire, D. J. Watts, C. Winship, R. L. Wolpert, Y. Xie, C. Young, J. Zinman, V. E. Johnson, Nat. Hum. Behav. 2018, 2, 6.