Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells
Xuping Liu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Jihuai Wu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
E-mail: [email protected]
Search for more papers by this authorYuqian Yang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorDeng Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorGuodong Li
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorXiaobing Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorWeihai Sun
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYuelin Wei
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYunfang Huang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorMiaoliang Huang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorLeqing Fan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorZhang Lan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorJianming Lin
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorKuo-Chuan Ho
Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorXuping Liu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Jihuai Wu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
E-mail: [email protected]
Search for more papers by this authorYuqian Yang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorDeng Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorGuodong Li
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorXiaobing Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorWeihai Sun
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYuelin Wei
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYunfang Huang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorMiaoliang Huang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorLeqing Fan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorZhang Lan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorJianming Lin
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorKuo-Chuan Ho
Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorAbstract
High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202004877-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Zhong, W. Wu, J. Liao, W. Feng, Y. Jiang, L. Wang, D. Kuang, Adv. Energy Mater. 2020, 10, 1902256.
- 2M. Grätzel, Nat. Mater. 2014, 13, 838.
- 3H. Snaith, P. Hacke, Nat. Energy 2018, 3, 459.
- 4Y. Tu, G. Xu, X. Yang, Y. Zhang, Z. Li, R. Su, D. Luo, W. Yang, Y. Miao, R. Cai, L. Jiang, X. Du, Y. Yang, Q. Liu, Y. Gao, S. Zhao, W. Huang, Q. Gong, R. Zhu, Sci. China: Phys., Mech. Astron. 2019, 62, 974221.
- 5E. Jung, N. Jeon, E. Park, C. Moon, T. Shin, T. Yang, J. Noh, J. Seo, Nature 2019, 567, 511.
- 6H. Pham, L. Xianqiang, W. Li, S. Manzhos, A. Kyaw, P. Sonar, Energy Environ. Sci. 2019, 12, 1177.
- 7L. Mao, S. Teicher, C. Stoumpos, R. Kennard, R. DeCrescent, G. Wu, J. Schuller, M. Chabinyc, A. Cheetham, R. Seshadri, J. Am. Chem. Soc. 2019, 141, 19099.
- 8Y. Wang, B. Jia, J. Wang, P. Xue, Y. Xiao, T. Li, J. Wang, H. Lu, Z. Tang, X. Lu, F. Huang, X. Zhan, Adv. Mater. 2020, 32, 202002066.
- 9Q. Guo, J. Wu, Y. Yang, X. Liu, Z. Lan, J. Lin, M. Huang, Y. Wei, J. Dong, J. Jia, Y. Huang, Research 2019, 2019, 4049793.
- 10Y. Chang, C. Ku, Y. Zhang, H. Wang, J. Chen, Adv. Funct. Mater. 2020, 30, 2000764.
- 11S. Tan, N. Zhou, Y. Chen, L. Li, G. Liu, P. Liu, C. Zhu, J. Lu, W. Sun, Q. Chen, H. Zhou, Adv. Energy Mater. 2019, 9, 1803024.
- 12A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 13 Best Research Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191105.pdf (accessed: November 2019).
- 14X. Li, Y. Fu, L. Pedesseau, P. Guo, S. Cuthriell, I. Hadar, J. Even, C. Katan, C. C. Stoumpos, R. D. Schaller, E. Harel, M. G. Kanatzidis, J. Am. Chem. Soc. 2020, 142, 11486.
- 15C. Stoumpos, M. Kanatzidis, Adv. Mater. 2016, 28, 5778.
- 16Z. Chen, Q. Zhang, M. Zhu, X. Wang, Q. Wang, A. Wee, K. Loh, G. Eda, Q. Xu, Adv. Funct. Mater. 2017, 29, 1603808.
- 17F. Zhang, K. Zhu, Adv. Energy Mater. 2020, 10, 1902579.
- 18A. Mahapatra, D. Prochowicz, M. Tavakoli, S. Trivedi, P. Kumar, P. Yadav, J. Mater. Chem. A 2020, 8, 27.
- 19Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, S. Dai, J. Mater. Chem. A 2019, 7, 6450.
- 20N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E. Yao, Y. Liu, A. Schiffer, Y. Yang, Nano Lett. 2016, 16, 1009.
- 21A. D. Jodlowski, C. Roldán-Carmona, G. Grancini, M. Salado, M. Ralaiarisoa, S. Ahmad, N. Koch, L. Camacho, G. de Miguel, M. K. Nazeeruddin, Nat. Energy 2017, 2, 972.
- 22T. Kishimoto, A. Suzuki, N. Ueoka, T. Oku, J. Ceram. Soc. Jpn. 2019, 127, 491.
- 23Y. Wang, K. Wang, W. Subhani, C. Zhang, X. Jiang, S. Wang, H. Bao, L. Liu, L. Wan, S. Liu, Small 2020, 16, 1907283.
- 24H. Xia, X. Li, J. Zhou, B. Wang, Y. Chu, Y. Li, G. Wu, D. Zhang, B. Xue, X. Zhang, Y. Hu, H. Zhou, Y. Zhang, ACS Appl. Energy Mater. 2020, 3, 3186.
- 25N. Chandra Deb Nath, K. Yoo, J. Lee, RSC Adv. 2018, 8, 17365.
- 26R. Stoddard, A. Rajagopal, R. Palmer, I. Braly, A. Jen, H. Hillhouse, ACS Energy Lett. 2018, 3, 1261.
- 27J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan, K. Zhu, Science 2019, 364, 475.
- 28Q. Yao, Q. Xue, Z. Li, K. Zhang, T. Zhang, N. Li, S. Yang, C. Brabec, H. Yip, Y. Cao, Adv. Mater. 2020, 32, 2000571.
- 29A. Jodlowski, A. Yepez, R. Luque, L. Camacho, G. deMiguel, Angew. Chem., Int. Ed. 2016, 55, 14972.
- 30O. Nazarenko, M. Kotyrba, S. Yakunin, M. Aebli, G. Rainò, B. Benin, M. Wörle, M. Kovalenko, J. Am. Chem. Soc. 2018, 140, 3850.
- 31L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, Science 2019, 363, 265.
- 32Y. Yang, J. Wu, X. Wang, Q. Guo, X. Liu, W. Sun, Y. Wei, Y. Huang, Z. Lan, M. Huang, J. Lin, H. Chen, Z. Wei, Adv. Mater. 2020, 32, 1904347.
- 33C. Fei, L. Guo, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Nano Energy 2016, 27, 17.
- 34G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, B. Zou, J. Am. Chem. Soc. 2017, 139, 10087.
- 35H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, S. I. Seok, Science 2019, 366, 749.
- 36Y. Tu, X. Yang, R. Su, D. Luo, Y. Cao, L. Zhao, T. Liu, W. Yang, Y. Zhang, Z. Xu, Q. Liu, J. Wu, Q. Gong, F. Mo, R. Zhu, Adv. Mater. 2018, 30, 1805085.
- 37W. Hu, W. Zhou, X. Lei, P. Zhou, M. Zhang, T. Chen, H. Zeng, J. Zhu, S. Dai, S. Yang, S. Yang, Adv. Mater. 2019, 31, 1806095.
- 38L. Gu, Y. Lei, J. Luo, X. Yang, T. Cai, Z. Zheng, ACS Appl. Mater. Interfaces 2019, 11, 24789.
- 39Y. Zhao, T. Liu, F. Ren, J. Duan, Y. Wang, X. Yang, Q. Li, Q. Tang, Mater. Chem. Front. 2018, 2, 2239.
- 40X. Liu, J. Wu, Q. Guo, Y. Yang, H. Luo, Q. Liu, X. Wang, X. He, M. Huang, Z. Lan, J. Mater. Chem. A 2019, 7, 11764.
- 41C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M. M. Junda, C. Wang, C.-S. Jiang, M. Al-Jassim, R. J. Ellingson, N. J. Podraza, K. Zhu, Y. Yan, Adv. Energy Mater. 2019, 9, 1803135.
- 42T. Liu, Y. Jiang, M. Qin, J. Liu, L. Sun, F. Qin, L. Hu, S. Xiong, X. Jiang, F. Jiang, P. Peng, S. Jin, X. Lu, Y. Zhou, Nat. Commun. 2019, 10, 878.
- 43X. Liu, J. Wu, Y. Yang, T. Wu, Q. Guo, J. Power Sources 2018, 399, 144.
- 44G. Gouget, F. Mauvy, U. C. Chung, S. Fourcade, M. Duttine, M.-D. Braida, T. L. Mercier, A. Demourgues, Adv. Funct. Mater. 2020, 30, 1909254.
- 45T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Adv. Mater. 2018, 30, 1706576.
- 46J. Chen, S. Kim, N. Park, Adv. Mater. 2018, 30, 1801948.
- 47D. Son, S. Kim, J. Seo, S. Lee, H. Shin, D. Lee, N. Park, J. Am. Chem. Soc. 2018, 140, 1358.