Adhesive Coacervates Driven by Hydrogen-Bonding Interaction
Qiongyao Peng
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorJingsi Chen
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorZicheng Zeng
The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700 China
Search for more papers by this authorTao Wang
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorLi Xiang
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorXuwen Peng
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorJifang Liu
The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700 China
Search for more papers by this authorCorresponding Author
Hongbo Zeng
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
E-mail: [email protected]
Search for more papers by this authorQiongyao Peng
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorJingsi Chen
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorZicheng Zeng
The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700 China
Search for more papers by this authorTao Wang
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorLi Xiang
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorXuwen Peng
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
Search for more papers by this authorJifang Liu
The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700 China
Search for more papers by this authorCorresponding Author
Hongbo Zeng
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada
E-mail: [email protected]
Search for more papers by this authorAbstract
Coacervation plays a critical role in numerous biological activities such as constructing biological tissues and achieving robust wet adhesion of marine sessile organisms, which conventionally occurs when oppositely charged polyelectrolytes are mixed in aqueous solutions driven by electrostatic attraction. Here, a novel type of adhesive coacervate is reported, driven by hydrogen-bonding interactions, readily formed by mixing silicotungstic acid and nonionic polyethylene glycol in water, providing a new approach for developing coacervates from nonionic systems. The as-prepared coacervate is easily paintable underwater, show strong wet adhesion to diverse substrates, and has been successfully applied as a hemostatic agent to treat organ injuries without displaying hemolytic activity, while with inherent antimicrobial properties thus avoiding inflammations and infections due to microorganism accumulation. This work demonstrates that coacervation can occur in salt-free environments via non-electrostatic interactions, providing a new platform for engineering multifunctional coacervate materials as tissue glues, wound dressings and membrane-free cell systems.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202004132-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
smll202004132-sup-0002-VideoS1.wmv13.5 MB | Supplemental Video 1 |
smll202004132-sup-0003-VideoS2.wmv9 MB | Supplemental Video 2 |
smll202004132-sup-0004-VideoS3.wmv10 MB | Supplemental Video 3 |
smll202004132-sup-0005-VideoS4.wmv4.4 MB | Supplemental Video 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. G. Bungenberg de Jong, Protoplasma 1932, 15, 110;
10.1007/BF01610198 Google Scholarb) R. R. Poudyal, F. P. Cakmak, C. D. Keating, P. C. Bevilacqua, Biochemistry 2018, 57, 2509.
- 2a) H. Okihana, C. Ponnamperuma, Nature 1982, 299, 347; b) S. Koga, D. S. Williams, A. W. Perriman, S. Mann, Nat. Chem. 2011, 3, 720.
- 3B. S. Schuster, E. H. Reed, R. Parthasarathy, C. N. Jahnke, R. M. Caldwell, J. G. Bermudez, H. Ramage, M. C. Good, D. A. Hammer, Nat. Commun. 2018, 9, 2985.
- 4G. C. Yeo, F. W. Keeley, A. S. Weiss, Adv. Colloid Interface Sci. 2011, 167, 94.
- 5Y. Tan, S. Hoon, P. A. Guerette, W. Wei, A. Ghadban, C. Hao, A. Miserez, J. H. Waite, Nat. Chem. Biol. 2015, 11, 488.
- 6a) K. A. Black, D. Priftis, S. L. Perry, J. Yip, W. Y. Byun, M. Tirrell, ACS Macro Lett. 2014, 3, 1088; b) D. S. Hwang, J. H. Waite, M. Tirrell, Biomaterials 2010, 31, 1080; c) S. Ambadipudi, J. Biernat, D. Riedel, E. Mandelkow, M. Zweckstetter, Nat. Commun. 2017, 8, 275.
- 7a) H. Zhao, C. Sun, R. J. Stewart, J. H. Waite, J. Biol. Chem. 2005, 280, 42938; b) J. H. Waite, N. H. Andersen, S. Jewhurst, C. Sun, J. Adhes. 2005, 81, 297; c) B. P. Lee, P. B. Messersmith, J. N. Israelachvili, J. H. Waite, Annu. Rev. Mater. Res. 2011, 41, 99.
- 8a) S. Basu, G. Bhattacharya, Science 1952, 115, 544; b) H. B. Bohidar, J. Surf. Sci. Technol. 2008, 24, 105; c) D. Priftis, M. Tirrell, Soft Matter 2012, 8, 9396; d) J. A. Thomson, P. Schurtenberger, G. M. Thurston, G. B. Benedek, Proc. Natl. Acad. Sci. USA 1987, 84, 7079; e) S. Kim, J. Huang, Y. Lee, S. Dutta, H. Y. Yoo, Y. M. Jung, Y. Jho, H. Zeng, D. S. Hwang, Proc. Natl. Acad. Sci. USA 2016, 113, E847; f) M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, M. Kamperman, Adv. Mater. 2019, 31, 1808179; g) C. E. Sing, S. L. Perry, Soft Matter 2020, 16, 2885.
- 9H. Shao, R. J. Stewart, Adv. Mater. 2010, 22, 729.
- 10J. P. Jones, M. Sima, R. G. O'Hara, R. J. Stewart, Adv. Healthcare Mater. 2016, 5, 795.
- 11P. G. Lawrence, Y. Lapitsky, Langmuir 2015, 31, 1564.
- 12Q. Wang, J. B. Schlenoff, Macromolecules 2014, 47, 3108.
- 13S. Kim, H. Y. Yoo, J. Huang, Y. Lee, S. Park, Y. Park, S. Jin, Y. M. Jung, H. Zeng, D. S. Hwang, Y. Jho, ACS Nano 2017, 11, 6764.
- 14a) H. Shao, G. M. Weerasekare, R. J. Stewart, J. Biomed. Mater. Res., Part A 2011, 97A, 46; b) J. Monahan, J. J. Wilker, Langmuir 2004, 20, 3724.
- 15A. Narayanan, J. R. Menefee, Q. Liu, A. Dhinojwala, A. Joy, ACS Nano 2020, 14, 8359.
- 16a) J. Chen, Q. Peng, T. Thundat, H. Zeng, Chem. Mater. 2019, 31, 4553; b) G. A. Williams, R. Ishige, O. R. Cromwell, J. Chung, A. Takahara, Z. Guan, Adv. Mater. 2015, 27, 3934.
- 17a) B. K. Ahn, D. W. Lee, J. N. Israelachvili, J. H. Waite, Nat. Mater. 2014, 13, 867; b) B. K. Ahn, S. Das, R. Linstadt, Y. Kaufman, N. R. Martinez-Rodriguez, R. Mirshafian, E. Kesselman, Y. Talmon, B. H. Lipshutz, J. N. Israelachvili, J. H. Waite, Nat. Commun. 2015, 6, 8663.
- 18a) M. B. Perrau, I. Iliopoulos, R. Audebert, Polymer 1989, 30, 2112; b) S. Yang, S. Ma, C. Wang, J. Xu, M. Zhu, Aust. J. Chem. 2014, 67, 11; c) K. Kim, M. Shin, M. Koh, J. H. Ryu, M. S. Lee, S. Hong, H. Lee, Adv. Funct. Mater. 2015, 25, 2402.
- 19a) L. Li, B. Yan, J. Yang, L. Chen, H. Zeng, Adv. Mater. 2015, 27, 1294; b) A. Zumbuehl, L. Ferreira, D. Kuhn, A. Astashkina, L. Long, Y. Yeo, T. Iaconis, M. Ghannoum, G. R. Fink, R. Langer, D. S. Kohane, Proc. Natl. Acad. Sci. USA 2007, 104, 12994.
- 20a) R. E. W. Hancock, H. Sahl, Nat. Biotechnol. 2006, 24, 1551; b) K. Baek, J. Liang, W. T. Lim, H. Zhao, D. H. Kim, H. Kong, ACS. Appl. Mater. Interfaces 2015, 7, 15359; c) L. Li, B. Yan, J. Yang, W. Huang, L. Chen, H. Zeng, ACS. Appl. Mater. Interfaces 2017, 9, 9221.
- 21a) A. C. Anselmo, S. Mitragotri, AAPS J. 2015, 17, 1041; b) A. Bijelic, M. Aureliano, A. Rompel, Angew. Chem., Int. Ed. 2019, 58, 2980; c) Y. Song, R. Tsunashima, Chem. Soc. Rev. 2012, 41, 7384.
- 22a) J. Xu, X. Li, J. Li, X. Li, B. Li, Y. Wang, L. Wu, W. Li, Angew. Chem., Int. Ed. 2017, 56, 8731; b) B. Jing, J. Qiu, Y. Zhu, Soft Matter 2017, 13, 4881.
- 23a) I. V. Kozhevnikov, Chem. Rev. 1998, 98, 171;
b) I. V. Kozhevnikov, Russ. Chem. Rev. 1987, 56, 811.
10.1070/RC1987v056n09ABEH003304 Google Scholar
- 24a) J. Desbrieres, Biomacromolecules 2002, 3, 342; b) J. Cho, M. Heuzey, A. Bégin, P. J. Carreau, J. Food Eng. 2006, 74, 500.
- 25a) B. Jing, X. Wang, H. Wang, J. Qiu, Y. Shi, H. Gao, Y. Zhu, J. Phys. Chem. B 2017, 121, 1723; b) X. Lin, Y. Wang, L. Wu, Langmuir 2009, 25, 6081.
- 26I. V. Kozhevnikov, Catal. Lett. 1995, 34, 213.
- 27N. Xue, X. Qiu, V. Aseyev, F. M. Winnik, Macromolecules 2017, 50, 4446.
- 28a) D. S. Hwang, H. Zeng, A. Srivastava, D. V. Krogstad, M. Tirrell, J. N. Israelachvili, J. H. Waite, Soft Matter 2010, 6, 3232; b) D. Priftis, R. Farina, M. Tirrell, Langmuir 2012, 28, 8721.
- 29D. S. Hwang, H. Zeng, Q. Lu, J. Israelachvili, J. H. Waite, Soft Matter 2012, 8, 5640.
- 30P. Karnal, P. Roberts, S. Gryska, C. King, C. Barrios, J. Frechette, ACS Appl. Mater. Interfaces 2017, 9, 42344.
- 31J. Chen, J. Liu, T. Thundat, H. Zeng, ACS. Appl. Mater. Interfaces 2019, 11, 18720.
- 32a) M. Fujita, A. Takemura, H. Ono, M. Kajiyama, S. Hayashi, H. Mizumachi, J. Appl. Polym. Sci. 2000, 75, 1535;
10.1002/(SICI)1097-4628(20000321)75:12<1535::AID-APP12>3.0.CO;2-1 CAS Web of Science® Google Scholarb) H. Kim, H. Mizumachi, J. Appl. Polym. Sci. 1995, 58, 1891.
- 33Y. Murakami, M. Yokoyama, H. Nishida, Y. Tomizawa, H. Kurosawa, Colloids Surf., B 2008, 65, 186.
- 34M. C. Giano, Z. Ibrahim, S. H. Medina, K. A. Sarhane, J. M. Christensen, Y. Yamada, G. Brandacher, J. P. Schneider, Nat. Commun. 2014, 5, 4095.
- 35S. Katz, M. Izhar, D. Mirelman, Ann. Surg. 1981, 194, 35.
- 36a) D. L. George, P. M. Arnow, A. S. Fox, A. L. Baker, J. R. Thistlethwaite, J. C. Emond, P. F. Whitington, C. E. Broelsch, Rev. Infect. Dis. 1991, 13, 387; b) J. J. Wade, N. Rolando, K. Hayllar, J. Philpott-Howard, M. W. Casewell, R. Williams, Hepatology 1995, 21, 1328.
- 37A. Bijelic, M. Aureliano, A. Rompel, Chem. Commun. 2018, 54, 1153.