Bath Electrospinning of Continuous and Scalable Multifunctional MXene-Infiltrated Nanoyarns
Ariana Levitt
A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Center for Functional Fabrics, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorShayan Seyedin
Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ UK
Search for more papers by this authorJizhen Zhang
Institute for Frontier Materials, Deakin University, Geelong, VIC, 3220 Australia
Search for more papers by this authorXuehang Wang
A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorJoselito M. Razal
Institute for Frontier Materials, Deakin University, Geelong, VIC, 3220 Australia
Search for more papers by this authorGenevieve Dion
Center for Functional Fabrics, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Yury Gogotsi
A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
E-mail: [email protected]
Search for more papers by this authorAriana Levitt
A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Center for Functional Fabrics, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorShayan Seyedin
Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ UK
Search for more papers by this authorJizhen Zhang
Institute for Frontier Materials, Deakin University, Geelong, VIC, 3220 Australia
Search for more papers by this authorXuehang Wang
A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorJoselito M. Razal
Institute for Frontier Materials, Deakin University, Geelong, VIC, 3220 Australia
Search for more papers by this authorGenevieve Dion
Center for Functional Fabrics, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Yury Gogotsi
A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Electroactive yarns that are stretchable are desired for many electronic textile applications, including energy storage, soft robotics, and sensing. However, using current methods to produce these yarns, achieving high loadings of electroactive materials and simultaneously demonstrating stretchability is a critical challenge. Here, a one-step bath electrospinning technique is developed to effectively capture Ti3C2Tx MXene flakes throughout continuous nylon and polyurethane (PU) nanofiber yarns (nanoyarns). With up to ≈90 wt% MXene loading, the resulting MXene/nylon nanoyarns demonstrate high electrical conductivity (up to 1195 S cm−1). By varying the flake size and MXene concentration, nanoyarns achieve stretchability of up to 43% (MXene/nylon) and 263% (MXene/PU). MXene/nylon nanoyarn electrodes offer high specific capacitance in saturated LiClO4 electrolyte (440 F cm−3 at 5 mV s−1), with a wide voltage window of 1.25 V and high rate capability (72% between 5 and 500 mV s−1). As strain sensors, MXene/PU yarns demonstrate a wide sensing range (60% under cyclic stretching), high sensitivity (gauge factor of ≈17 in the range of 20–50% strain), and low drift. Utilizing the stretchability of polymer nanofibers and the electrical and electrochemical properties of MXene, MXene-based nanoyarns demonstrate potential in a wide range of applications, including stretchable electronics and body movement monitoring.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202002158-sup-0001-SuppMat.pdf698.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Pailes-Friedman, Adv. Mater. Technol. 2018, 3, 1700307.
- 2W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.-M. Tao, Adv. Mater. 2014, 26, 5310.
- 3D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Chem. Soc. Rev. 2015, 44, 647.
- 4L. Wang, X. Fu, J. He, X. Shi, T. Chen, P. Chen, B. Wang, H. Peng, Adv. Mater. 2020, 32, 1901971.
- 5S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, J. M. Razal, Mater. Horiz. 2019, 6, 219.
- 6S. Seyedin, J. M. Razal, P. C. Innis, G. G. Wallace, Smart Mater. Struct. 2016, 25, 035015.
- 7Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, B. Li, ACS Appl. Mater. Interfaces 2018, 10, 6624.
- 8M. Z. Seyedin, J. M. Razal, P. C. Innis, R. Jalili, G. G. Wallace, Adv. Funct. Mater. 2015, 25, 94.
- 9W. Zhong, C. Liu, C. Xiang, Y. Jin, M. Li, K. Liu, Q. Liu, Y. Wang, G. Sun, D. Wang, ACS Appl. Mater. Interfaces 2017, 9, 42058.
- 10P. Sukitpaneenit, T. Thanpitcha, A. Sirivat, C. Weder, R. Rujiravanit, J. Appl. Polym. Sci. 2007, 106, 4038.
- 11S. Seyedin, J. M. Razal, P. C. Innis, A. Jeiranikhameneh, S. Beirne, G. G. Wallace, ACS Appl. Mater. Interfaces 2015, 7, 21150.
- 12J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi, F. Yang, P. A. Lynch, W. Yang, J. Liu, X. Wang, J. M. Razal, Small 2019, 15, 1970041.
- 13M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.
- 14Y. Gogotsi, B. Anasori, 2D Metal Carbides and Nitrides (MXenes), Springer International Publishing, Cham, Switzerland 2019.
- 15B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.
- 16J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, X. Wang, Y. Gogotsi, J. M. Razal, Adv. Mater. 2020, 2001093.
- 17C. Zhang, M. P. Kremer, A. Seral-Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, V. Nicolosi, Adv. Funct. Mater. 2018, 28, 1705506.
- 18B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N. J. Alvarez, E. C. Kumbur, Y. Gogotsi, ACS Nano 2018, 12, 2685.
- 19K. Maleski, V. N. Mochalin, Y. Gogotsi, Chem. Mater. 2017, 29, 1632.
- 20S. Seyedin, J. Zhang, K. A. S. Usman, S. Qin, A. M. Glushenkov, E. R. S. Yanza, R. T. Jones, J. M. Razal, Global Challenges 2019, 3, 1900037.
- 21J. Lipton, G.-M. Weng, M. Alhabeb, K. Maleski, F. Antonio, J. Kong, Y. Gogotsi, A. D. Taylor, Nanoscale 2019, 11, 20295.
- 22Z. Ling, C. E. Ren, M.-Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum, Y. Gogotsi, Proc. Natl. Acad. Sci. USA 2014, 111, 16676.
- 23J. Zhang, S. Seyedin, S. Qin, P. A. Lynch, Z. Wang, W. Yang, X. Wang, J. M. Razal, J. Mater. Chem. A 2019, 7, 6401.
- 24B. Fang, D. Chang, Z. Xu, C. Gao, Adv. Mater. 2020, 32, 1902664.
- 25A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, J. Mater. Chem. A 2019, 7, 269.
- 26W. Shao, M. Tebyetekerwa, I. Marriam, W. Li, Y. Wu, S. Peng, S. Ramakrishna, S. Yang, M. Zhu, J. Power Sources 2018, 396, 683.
- 27S. Uzun, S. Seyedin, A. L. Stoltzfus, A. S. Levitt, M. Alhabeb, M. Anayee, C. J. Strobel, J. M. Razal, G. Dion, Y. Gogotsi, Adv. Funct. Mater. 2019, 29, 1905015.
- 28S. Afroj, N. Karim, Z. Wang, S. Tan, P. He, M. Holwill, D. Ghazaryan, A. Fernando, K. S. Novoselov, ACS Nano 2019, 13, 3847.
- 29M. Hu, Z. Li, G. Li, T. Hu, C. Zhang, X. Wang, Adv. Mater. Technol. 2017, 2, 1700143.
- 30T. H. Park, S. Yu, M. Koo, H. Kim, E. H. Kim, J.-E. Park, B. Ok, B. Kim, S. H. Noh, C. Park, E. Kim, C. M. Koo, C. Park, ACS Nano 2019, 13, 6835.
- 31J. Zhang, S. Uzun, S. Seyedin, P. A. Lynch, B. Akuzum, Z. Wang, S. Qin, M. Alhabeb, C. E. Shuck, W. Lei, E. C. Kumbur, W. Yang, X. Wang, G. Dion, J. M. Razal, Y. Gogotsi, ACS Cent. Sci. 2020, 6, 254.
- 32S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion, Y. Gogotsi, J. M. Razal, Adv. Funct. Mater. 2020, 30, 1910504.
- 33K. Yang, F. Yin, D. Xia, H. Peng, J. Yang, W. Yuan, Nanoscale 2019, 11, 9949.
- 34A. S. Levitt, R. Vallett, G. Dion, C. L. Schauer, J. Appl. Polym. Sci. 2018, 135, 46404.
- 35E. A. Mayerberger, O. Urbanek, R. M. McDaniel, R. M. Street, M. W. Barsoum, C. L. Schauer, J. Appl. Polym. Sci. 2017, 134, 45295.
- 36T. A. Hancock, J. E. Spruiell, J. L. White, J. Appl. Polym. Sci. 1977, 21, 1227.
- 37A. Sarycheva, Y. Gogotsi, Chem. Mater. 2020, 32, 3480.
- 38J. V. Miller, E. G. Bartick, Appl. Spectrosc. 2001, 55, 1729.
- 39K. Maleski, C. E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi, ACS Appl. Mater. Interfaces 2018, 10, 24491.
- 40Y. Zhou, J. He, H. Wang, K. Qi, B. Ding, S. Cui, Mater. Des. 2016, 95, 591.
- 41X. Sun, J. He, R. Qiang, N. Nan, X. You, Y. Zhou, W. Shao, F. Liu, R. Liu, Materials 2019, 12, 273.
- 42N. Nan, J. He, X. You, X. Sun, Y. Zhou, K. Qi, W. Shao, F. Liu, Y. Chu, B. Ding, Adv. Mater. Technol. 2019, 4, 1800338.
- 43H. Matsumoto, S. Imaizumi, Y. Konosu, M. Ashizawa, M. Minagawa, A. Tanioka, W. Lu, J. M. Tour, ACS Appl. Mater. Interfaces 2013, 5, 6225.
- 44Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, A. Levitt, N. Li, C. Haines, R. Ovalle-Robles, W. Lei, Y. Gogotsi, R. H. Baughman, J. M. Razal, Small 2018, 14, 1802225.
- 45J. W. Park, D. Y. Lee, H. Kim, J. S. Hyeon, M. J. de Andrade, R. H. Baughman, S. J. Kim, MRS Commun. 2019, 9, 114.
- 46A. S. Levitt, C. E. Knittel, R. Vallett, M. Koerner, G. Dion, C. L. Schauer, J. Appl. Polym. Sci. 2017, 134, 44813.
- 47K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan, K. Jiang, Nanotechnology 2010, 21, 045708.
- 48Y. Sugimoto, M. Shioya, H. Matsumoto, M. Minagawa, A. Tanioka, Carbon 2013, 60, 193.
- 49H. Krenchel, Fibre Reinforcement: Theoretical and Practical Investigations of the Elasticity and Strength of Fibre-reinforced Materials, Akademisk Forlag, Copenhagen, Denmark 1964.
- 50M. R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L. Taberna, M. W. Barsoum, P. Simon, Y. Gogotsi, Nat. Energy 2017, 2, 17105.
- 51S. Seyedin, E. R. S. Yanza, J. M. Razal, J. Mater. Chem. A 2017, 5, 24076.
- 52M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502.
- 53Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai, H. Chen, Y. Liu, K. Gopalsamy, W. Gao, C. Gao, J. Mater. Chem. A 2017, 5, 22113.
- 54E. M. Christenson, J. M. Anderson, A. Hiltner, E. Baer, Polymer 2005, 46, 11744.
- 55F. Yeh, B. S. Hsiao, B. B. Sauer, S. Michel, H. W. Siesler, Macromolecules 2003, 36, 1940.
- 56M. Z. Seyedin, J. M. Razal, P. C. Innis, G. G. Wallace, Adv. Funct. Mater. 2014, 24, 2957.
- 57H. Sun, K. Dai, W. Zhai, Y. Zhou, J. Li, G. Zheng, B. Li, C. Liu, C. Shen, ACS Appl. Mater. Interfaces 2019, 11, 36052.
- 58X. Li, K. H. Koh, M. Farhan, K. W. C. Lai, Nanoscale 2020, 12, 4110.
- 59H. Li, Z. Du, ACS Appl. Mater. Interfaces 2019, 11, 45930.
- 60T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296.
- 61G.-J. Zhu, P.-G. Ren, H. Guo, Y.-L. Jin, D.-X. Yan, Z.-M. Li, ACS Appl. Mater. Interfaces 2019, 11, 23649.
- 62M. Zohair, K. Moyer, J. Eaves-Rathert, C. Meng, J. Waugh, C. L. Pint, ACS Nano 2020, 14, 2308.
- 63M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.