Sensitive and Stable Tin–Lead Hybrid Perovskite Photodetectors Enabled by Double-Sided Surface Passivation for Infrared Upconversion Detection
Yan Zhao
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorChenglong Li
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorJizhong Jiang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorBoming Wang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Liang Shen
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
E-mail: [email protected]
Search for more papers by this authorYan Zhao
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorChenglong Li
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorJizhong Jiang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorBoming Wang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Liang Shen
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Tin(Sn)-based perovskite is currently considered one of the most promising materials due to extending the absorption spectrum and reducing the use of lead (Pb). However, Sn2+ is easily oxidized to Sn4+ in atmosphere, causing more defects and degradation of perovskite materials. Herein, double-sided interface engineering is proposed, that is, Sn-Pb perovskite films are sandwiched between the phenethylammonium iodide (PEAI) in both the bottom and top sides. The larger organic cations of PEA+ are arranged into a perovskite surface lattice to form a 2D capping layer, which can effectively prevent the water and oxygen to destroy bulk perovskite. Meanwhile, the PEA+ can also passivate defects of iodide anions at the bottom of perovskite films, which is always present but rarely considered previously. Compared to one sided passivation, Sn-Pb hybrid perovskite photodetectors contribute a significant enhancement of performance and stability, yielding a broadband response of 300–1050 nm, a low dark current density of 1.25 × 10–3 mA cm–2 at –0.1 V, fast response speed of 35 ns, and stability beyond 240 h. Furthermore, the Sn-Pb broadband photodetectors are integrated in an infrared up-conversion system, converting near-infrared light into visible light. It is believed that a double-sided passivation method can provide new strategies to achieving high-performance perovskite photodetectors.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202001534-sup-0001-SuppMat.pdf729.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. O. Kelley, C. A. Mirkin, D. R. Walt, R. F. Ismagilov, M. Toner, E. H. Sargent, Nat. Nanotechnol. 2014, 9, 969.
- 2X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang, Adv. Opt. Mater. 2018, 6, 1700638.
- 3A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, P. Meredith, Nat. Commun. 2015, 6, 6343.
- 4P. Wang, S. Liu, W. Luo, H. Fang, F. Gong, N. Guo, Z.-G. Chen, J. Zou, Y. Huang, X. Zhou, J. Wang, X. Chen, W. Lu, F. Xiu, W. Hu, Adv. Mater. 2017, 29, 1604439.
- 5A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, T. Sakka, Anal. Chem. 2015, 87, 1655.
- 6C. X. Bao, J. Yang, S. Bai, W. D. Xu, Z. B. Yan, Q. Y. Xu, J. M. Liu, W. J. Zhang, F. Gao, Adv. Mater. 2018, 30, 1803422.
- 7F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nat. Nanotechnol. 2014, 9, 780.
- 8N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
- 9I. Vurgaftman, J. Meyer, L. Ram-Mohan, J. Appl. Phys. 2001, 89, 5815.
- 10M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
- 11S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. Klem, L. Levina, E. H. Sargent, Nat. Mater. 2005, 4, 138.
- 12S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 13X. Xu, Q. Chen, Z. Hong, H. Zhou, Z. Liu, W. H. Chang, P. Sun, H. Chen, N. D. Marco, M. Wang, Y. Yang, Nano Lett. 2015, 15, 6514.
- 14H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, C.-C. Wu, Adv. Mater. 2005, 17, 2489.
- 15R. D. Jansen-van Vuuren, A. Armin, A. K. Pandey, P. L. Burn, P. Meredith, Adv. Mater. 2016, 28, 4766.
- 16W. B. Wang, F. J. Zhang, M. D. Du, L. L. Li, M. Zhang, K. Wang, Y. S. Wang, B. Hu, Y. Fang, J. S. Huang, Nano Lett. 2017, 17, 1995.
- 17Z. J. Zhao, C. L. Li, L. Shen, X. L. Zhang, F. J. Zhang, Nanoscale 2020, 12, 1091.
- 18Z. J. Zhao, J. Wang, C. Y. Xu, K. X. Yang, F. G. Zhao, K. Wang, X. L. Zhang, F. J. Zhang, J. Phys. Chem. Lett. 2020, 11, 366.
- 19H. Xia, S. Tong, C. Zhang, C. Wang, J. Sun, J. He, J. Zhang, Y. Gao, J. Yang, Appl. Phys. Lett. 2018, 112, 233301.
- 20Q. Hu, H. Wu, J. Sun, D. Yan, Y. Gao, J. Yang, Nanoscale 2016, 8, 5350.
- 21H. N. Si, Z. Zhang, Q. L. Liao, G. J. Zhang, Y. Ou, S. C. Zhang, H. L. Wu, J. Wu, Z. Kang, Y. Zhang, Adv. Mater. 2019, 32, 1904702.
- 22J. F. Wang, S. Q. Luo, Y. Lin, Y. F. Chen, Y. H. Deng, Z. M. Li, K. Meng, G. Chen, T. T. Huang, S. Xiao, H. Huang, C. H. Zhou, L. M. Ding, J. He, J. S. Huang, Y. B. Yuan, Nat. Commun. 2020, 11, 582.
- 23X. P. Zheng, Y. Hou, C. X. Bao, J. Yin, F. L. Yuan, Z. Huang, K. P. Song, J. K. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. B. Lin, D. Xue, B. Chen, A. K. Johnston, N. N. Wei, M. N. Hedhili, M. Y. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z. Lu, O. F. Mohammed, F. Gao, E. H. Sargent, O. M. Bakr, Nat. Energy 2020, 5, 131.
- 24H. Zhang, M. K. Nazeeruddin, W. C. H. Choy, Adv. Mater. 2019, 31, 1805702.
- 25Z. B. Yang, Z. H. Yu, H. T. Wei, X. Xiao, Z. Y. Ni, B. Chen, Y. H. Deng, S. N. Habisreutinger, X. H. Chen, K. Wang, J. J. Zhao, P. N. Rudd, J. J. Berry, M. C. Beard, J. S. Huang, Nat. Commun. 2019, 10, 4498.
- 26J. W. Lee, D. Y. Kim, F. So, Adv. Funct. Mater. 2015, 25, 1233.
- 27Y. Hou, E. Aydin, M. D. Bastiani, C. X. Xiao, F. H. Isikgor, D.-J. Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S.-W. Baek, Z. R. Huang, M. Y. Wei, Y. T. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. V. Kerschaver, M. I. Saidaminov, D. Baran, Q. Q. Qiao, K. Zhu, S. D. Wolf, E. H. Sargent, Science 2020, 367, 1135.
- 28H. X. Sun, K. M. Deng, Y. Jiang, J. F. Ni, J. Xiong, L. Li, Small 2020, 16, 1906681.
- 29H. X. Sun, K. M. Deng, J. Xiong, L Li, Adv. Energy Mater. 2020, 10, 1903347.
- 30Y. J. Fang, J. S. Huang, Adv. Mater. 2015, 27, 2804.
- 31S. C. Tong, C. D. Gong, C. J Zhang, G. Liu, C. H. Zhou, J. Sun, S. Xiao, J. He, Y. L. Gao, J. L. Yang, Appl. Mater. Today 2019, 15, 389.
- 32L. Shen, Y. J. Fang, D. Wang, Y. Bai, Y. H. Deng, M. M. Wang, Y. F. Lu, J. S. Huang, Adv. Mater. 2016, 28, 10794.
- 33C. X. Bao, Z. L. Chen, Y. J. Fang, H. T. Wei, Y. H. Deng, X. Xiao, L. L. Li, J. S. Huang, Adv. Mater. 2017, 29, 1703209.
- 34X. K. Zhou, D. Z. Yang, D. G. Ma, Adv. Opt. Mater. 2015, 3, 1570.
- 35H. X. Sun, W. Tian, X. F. Wang, K. M. Deng, J. Xiong, L. Li, Adv. Mater. 2020, 32, 1908108.
- 36F. R. Cao, W. Tian, M. Wang, H. P. Cao, L. Li, Adv. Funct. Mater. 2019, 29, 1901280.
- 37W. Tian, L. L. Min, F. R. Cao, L. Li, Adv. Mater. 2020, 32, 1906974.
- 38Z. L. Chen, C. L. Li, A. A. Zhumekenov, X, P. Z, C. Yang, H. Z. Yang, Y. He, B. Turedi, O. F. Mohammed, L. Shen, O. M. Bakr, Adv. Opt. Mater. 2019, 7, 1900506.
- 39L. Shen, Y. Z. Lin, C. X. Bao, Y. Bai, Y. H. Deng, M. M. Wang, T. Li, Y. F. Lu, A. Gruverman, W. W. Li, J. S. Huang, Mater. Horiz. 2017, 4, 242.
- 40N. Li, Y. S. Lau, Z. Xiao, L. M. Ding, F. R. Zhu, Adv. Opt. Mater. 2018, 6, 1801084.
- 41X. B. Xu, C.-C. Chueh, P. F. Jing, Z. B. Yang, X. L. Shi, T. Zhao, L. Y. Lin, A. K.-Y. Jen, Adv. Funct. Mater. 2017, 27, 1701053.
- 42H. L. Zhu, Z. F. Liang, Z. B. Huo, W. K. Ng, J. Mao, K. S. Wong, W.-J. Yin, W. C. H. Choy, Adv. Funct. Mater. 2018, 28, 1706068.
- 43H. L. Zhu, W. C. H. Choy, Sol. RRL 2018, 2, 1800146.
- 44W. B. Wang, D. W. Zhao, F. J. Zhang, L. D. Li, M. D. Du, C. L. Wang, Y. Yu, Q. Q. Huang, M. Zhang, L. L. Li, J. L. Miao, Z. Lou, G. Z. Shen, Y. Fang, Y. F. Yan, Adv. Funct. Mater. 2017, 27, 1703953.
- 45C. L. Li, H. L. Wang, F. Wang, T. F. Li, M. J. Xu, H. Wang, Z. Wang, X. W. Zhan, W. D. Hu, L. Shen, Light: Sci. Appl. 2020, 9, 31.
- 46J. S. Liu, H. Wen, L. Shen, Nanotechnology 2020, 31, 214001.
- 47J. Zhou, J. J. Luo, X. M. Rong, P. J. Wei, M. S. Molokeev, Y. Huang, J. Zhao, Q. L. Liu, X. W. Zhang, J. Tang, Z. G. Xia, Adv. Opt. Mater. 2019, 7, 1900139.
- 48F. R. Cao, W. Tian, M. Wang, M. Wang, L. Li, InfoMat 2020, 2, 577.
- 49L. Z. Yan, X. Z. Du, C. Liu, S. D. Zhang, H. Zhou, Phys. Status Solidi A 2019, 216, 1900417.
- 50C.-K. Liu, Q. D. Tai, N. X. Wang, G. Q. Tang, H.-L. Loi, F. Yan, Adv. Sci. 2019, 6, 1900751.
- 51X. Y. Jiang, F. Wang, Q. Wei, H. S. Li, Y. Q. Shang, W. J. Zhou, C. Wang, P. H. Cheng, Q. Chen, L. W. Chen, Z. J. Ning, Nat. Commun. 2020, 11, 1245.
- 52H. Y. Tang, Y. Q. Shang, W. J. Zhou, Z. J. Peng, Z. J. Ning, Sol. RRL 2018, 3, 1800256.
- 53S. Gu, R. X. Lin, Q. L. Han, Y. Gao, H. R. Tan, J. Zhu, Adv. Mater. 2020, https://doi.org/10.1002/adma.201907392.
- 54R. X. Lin, K. Xiao, Z. Y. Qin, Q. L. Han, C. F. Zhang, M. Y. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. D. Li, J. Zhu, E. H. Sargent, H. R. Tan, Nat. Energy 2019, 4, 864.
- 55M. I. Saidaminov, I. Spanopoulos, J. Abed, W. J. Ke, J. Wicks, M. G. Kanatzidis, E. H. Sargent, ACS Energy Lett. 2020, 5, 1153.
- 56D. W. Zhao, C. Chen, C. L. Wang, M. M. Junda, Z. N. Song, C. R. Grice, Y. Yu, C. W. Li, B. Subedi, N. J. Podraza, X. Z. Zhao, G. J. Fang, R. Xiong, K. Zhu, Y. F. Yan, Nat. Energy 2018, 3, 1093.
- 57D. W. Zhao, Y. Yu, C. L. Wang, W. Q. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Z. Zhao, R. Xiong, Y. F. Yan, Nat. Energy 2017, 2, 17018.
- 58Q. L. Han, Y. Wei, R. X. Lin, Z. M. Fang, K. Xiao, X. Luo, S. Gu, J. Zhu, L. M. Ding, H. R. Tan, Sci. Bull. 2019, 64, 1399.
- 59W. Q. Liao, D. W. Zhao, Y. Yu, C. R. Grice, C. L. Wang, A. J. Cimaroli, P. Schulz, W. W. Meng, K. Zhu, R.-G. Xiong, Y. F. Yan, Adv. Mater. 2016, 28, 9333.
- 60M. A. Mahmud, T. Duong, Y. T. Yin, H. T. Pham, D. Walter, J. Peng, Y. L. Wu, L. Li, H. P. Shen, N. Wu, N. Mozaffari, G. Andersson, K. R. Catchpole, K. J. Weber, T. P. White, Adv. Funct. Mater. 2019, 30, 1907962.
- 61Z. Yang, J. J. Dou, M. Q. Wang, Sol. RRL 2018, 2, 1800177.
- 62P. Chen, Y. Bai, S. C. Wang, M. Q. Lyu, J. Yun, L. Z. Wang, Adv. Funct. Mater. 2018, 28, 1706923.
- 63E. Ruggeri, M. Anaya, K. Gafkowski, G. Delport, F. U. Kosasih, A. Abfalterer, S. Mackowski, C. Ducati, S. D. Stranks, Adv. Mater. 2019, 31, 1905247.
- 64F. Zhang, H. P. Lu, J. H. Tong, J. J. Berry, M. C. Beard, K. Zhu, Energy Environ. Sci. 2020, 13, 1154.
- 65T. W. He, S. S. Li, Y. Z. Jiang, C. C. Qin, M. H. Cui, L. Qiao, H. Y. Xu, J. E. Yang, R. Long, H. H. Wang, M. J. Yuan, Nat. Commun. 2020, 11, 1672.
- 66Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 2019, 13, 460.
- 67B. Chen, P. N. Rudd, S. Yang, Y. B. Yuan, J. S. Huang, Chem. Soc. Rev. 2019, 48, 3842.
- 68E. Aydin, M. D. Bastiani, S. D. Wolf, Adv. Mater. 2019, 31, 1900428.
- 69T. Leijtens, G. E. Eperon, A. J. Barker, G Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza, Energy Environ. Sci. 2016, 9, 3472.
- 70C. L. Li, J. R. Lu, Y. Zhao, L. Y. Sun, G. X. Wang, Y. Ma, S. M. Zhang, J. R. Zhou, L. Shen, W. Huang, Small 2019, 15, 1903599.
- 71M. S. Long, A. Y. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Y. Fu, E. F. Liu, Xi. S. Chen, W. Lu, T. Nilges, J. B. Xu, X. M. Wang, W. D. Hu, F. Miao, Sci. Adv. 2017, 3, e1700589.
- 72F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, J. S. Huang, Nat. Nanotechnol. 2012, 7, 798.
- 73M. M. Hao, Y. Bai, S. Zeiske, L. Ren, J. X. Liu, Y. B. Yuan, N. Zarrabi, N. Y. Cheng, M. Ghasemi, P. Chen, M. Q. Lyu, D. X. He, J. Yun, Y. Du, Y. Wang, S. S. Ding, A. Armin, P. Meredith, G. Liu, H. Cheng, L. Z. Wang, Nat. Energy 2020, 5, 79.
- 74Y. Q. Yang, J. H. Wu, X. B. Wang, Q. Y. Guo, X. P. Liu, W. H. Sun, Y. L. Wei, Y. F. Huang, Z. Lan, M. L. Huang, J. M. Lin, H. W. Chen, Z. H. Wei, Adv. Mater. 2019, 32, 1904347.
- 75J. Kim, R. Godin, S. D. Dimitrov, T. Du, D. Bryant, M. A. McLachlan, J. R. Durrant, Adv. Energy Mater. 2018, 8, 1802474.
- 76H. L. Chen, W. F. Fu, C. Y. Huang, Z. Q. Zhang, S. X. Li, F. Z. Ding, M. M. Shi, C. Li, A. K.-Y. Jen, H. Z. Chen, Adv. Energy Mater. 2017, 7, 1700012.
- 77B. Li, M. J. Li, C. B. Fei, G. Z. Cao, J. J. Tian, J. Mater. Chem. A 2017, 5, 24168.
- 78S. G. Han, P. Wang, J. Zhang, X. T. Liu, Z. H. Sun, X. Y. Huang, L. N. Li, C. M. Ji, W. C. Zhang, B. Teng, W. D. Hu, M. C. Hong, J. H. Luo, Laser Photonics Rev. 2018, 12, 1800060.
- 79H. Wang, D. H. Kim, Chem. Soc. Rev. 2017, 46, 5204.
- 80W. Tian, H. P. Zhou, L. Li, Small 2017, 13, 1702107.
- 81Y. H. Dong, Y. S. Zou, J. Z. Song, X. F. Song, H. B. Zeng, J. Mater. Chem. C 2017, 5, 11369.
- 82Y. Zhao, C. L. Li, L. Shen, InfoMat 2019, 1, 407.
- 83Y. Zhao, C. L. Li, L. Shen, Chin. Phys. B 2018, 27, 127806.
- 84S. H. Wang, H. Y. Chen, J. D. Zhang, G. Y. Xu, W. J. Chen, R. M. Xue, M. Y. Zhang, Y. W. Li, Y. F. Li, Adv. Mater. 2019, 31, 1903691.
- 85G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. D. Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun. 2017, 8, 15684.
- 86M. Y. Hu, M. Chen, P. J. Guo, H. Zhou, J. J. Deng, Y. D. Yao, Y. Jiang, J. Gong, Z. H. Dai, Y. X. Zhou, F. Qian, X. Y. Chong, J. Feng, R. D. Schaller, K. Zhu, N. P. Padture, Y. Y. Zhou, Nat. Commun. 2020, 11, 151.
- 87Y. Q. Liao, H. F. Liu, W. J. Zhou, D. W. Yang, Y. Q. Shang, Z. F. Shi, B. H. Li, X. Y. Jiang, L. J. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. L. Mi, E. H. Sargent, Z. J. Ning, J. Am. Chem. Soc. 2017, 139, 6693.
- 88M. Y. Wei, K. Xiao, G. Walters, R. X. Lin, Y. B. Zhao, M. I. Saidaminov, P. Todorović, A. Johnston, Z. R. Huang, H. J. Chen, A. D. Li, J. Zhu, Z. Y. Yang, Y.-K. Wang, A. H. Proppe, S. O. Kelley, Y. Hou, O. Voznyy, H. R. Tan, E. H. Sargent, Adv. Mater. 2020, 32, 1907058.
- 89Y. X. Ouyang, Y. J. Li, P. C. Zhu, Q. Li, Y. Gao, J. Y. Tong, L. Shi, Q. H. Zhou, C. Y. Ling, Q. Chen, Z. T. Deng, H. R. Tan, W. Q. Deng, J. L. Wang, J. Mater. Chem. A 2019, 7, 2275.