Antibacterial Activity of Graphdiyne and Graphdiyne Oxide
Corresponding Author
Zhiling Zhu
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected], [email protected]
Search for more papers by this authorQiang Bai
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorShuo Li
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorSiheng Li
Department of Chemistry, University of Houston, Houston, TX, 77204 USA
Search for more papers by this authorManhong Liu
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorFanglin Du
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorCorresponding Author
Ning Sui
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected], [email protected]
Search for more papers by this authorWilliam W. Yu
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, 71115 USA
Search for more papers by this authorCorresponding Author
Zhiling Zhu
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected], [email protected]
Search for more papers by this authorQiang Bai
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorShuo Li
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorSiheng Li
Department of Chemistry, University of Houston, Houston, TX, 77204 USA
Search for more papers by this authorManhong Liu
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorFanglin Du
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Search for more papers by this authorCorresponding Author
Ning Sui
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
E-mail: [email protected], [email protected]
Search for more papers by this authorWilliam W. Yu
College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042 China
Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, 71115 USA
Search for more papers by this authorAbstract
From manufacture to disposal, the interaction of graphdiyne based nanomaterials with living organisms is inevitable and crucial. However, the cytotoxic properties of this novel carbon nanomaterial are rarely investigated, and the mechanisms behind their cytotoxicity are totally unknown. In this study, the antibacterial activity of graphdiyne (GDY) and graphdiyne oxide (GDYO) is reported. GDY is capable of inhibiting broad-spectrum bacterial growth while exerting moderate cytotoxicity on mammalian cells. In comparison, GDYO exhibits lower antibacterial activity than that of GDY. Then an alterable, synergetic antibacterial mechanism of GDY, involving wrapping bacterial membrane, membrane insertion and disruption, and reactive oxygen species generation is demonstrated, while the differential gene expression analysis indicates that GDY could only alter the bacterial metabolism slightly and the oxidative stress route may be a minor bactericidal factor. The investigation of the antibacterial behaviors of GDY based nanomaterials may provide useful guidelines for the future design and application of this novel molecular allotrope of carbon.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202001440-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Q. Xin, H. Shah, A. Nawaz, W. Xie, M. Z. Akram, A. Batool, L. Tian, S. U. Jan, R. Boddula, B. Guo, Q. Liu, J. R. Gong, Adv. Mater. 2019, 31, 1804838; b) H. E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Adv. Healthcare Mater. 2018, 7, 1701406; c) S. Szunerits, R. Boukherroub, J. Mater. Chem. B 2016, 4, 6892.
- 2a) S. B. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. H. Yang, Y. Chen, ACS Nano 2009, 3, 3891; b) Y. F. Li, H. Y. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. J. Gao, Proc. Natl. Acad. Sci. USA 2013, 110, 12295; c) X. Lu, X. Feng, J. R. Werber, C. Chu, I. Zucker, J.-H. Kim, C. O. Osuji, M. Elimelech, Proc. Natl. Acad. Sci. USA 2017, 114, E9793; d) D. P. Linklater, M. De Volder, V. A. Baulin, M. Werner, S. Jessl, M. Golozar, L. Maggini, S. Rubanov, E. Hanssen, S. Juodkazis, E. P. Ivanova, ACS Nano 2018, 12, 6657; e) O. Akhavan, E. Ghaderi, ACS Nano 2010, 4, 5731.
- 3a) C. D. Vecitis, K. R. Zodrow, S. Kang, M. Elimelech, ACS Nano 2010, 4, 5471; b) S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, ACS Nano 2011, 5, 6971; c) W. Zhang, C. Wang, Z. Li, Z. Lu, Y. Li, J.-J. Yin, Y.-T. Zhou, X. Gao, Y. Fang, G. Nie, Y. Zhao, Adv. Mater. 2012, 24, 5391; d) X. F. Zou, L. Zhang, Z. J. Wang, Y. Luo, J. Am. Chem. Soc. 2016, 138, 2064.
- 4a) Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, R. Zhou, Nat. Nanotechnol. 2013, 8, 594; b) W. Zhu, A. von dem Bussche, X. Yi, Y. Qiu, Z. Wang, P. Weston, R. H. Hurt, A. B. Kane, H. Gao, Proc. Natl. Acad. Sci. USA 2016, 113, 12374; c) J. Chen, G. Zhou, L. Chen, Y. Wang, X. Wang, S. Zeng, J. Phys. Chem. C 2016, 120, 6225.
- 5a) T. Mashino, N. Usui, K. Okuda, T. Hirota, M. Mochizuki, Bioorg. Med. Chem. 2003, 11, 1433; b) Q. Xin, Q. Liu, L. Geng, Q. Fang, J. R. Gong, Adv. Healthcare Mater. 2017, 6, 1601011.
- 6a) S. Kang, M. Herzberg, D. F. Rodrigues, M. Elimelech, Langmuir 2008, 24, 6409; b) S. Kang, M. Pinault, L. D. Pfefferle, M. Elimelech, Langmuir 2007, 23, 8670.
- 7a) F. Perreault, A. F. de Faria, S. Nejati, M. Elimelech, ACS Nano 2015, 9, 7226; b) W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, ACS Nano 2010, 4, 4317; c) V. T. H. Pham, V. K. Truong, M. D. J. Quinn, S. M. Notley, Y. Guo, V. A. Baulin, M. Al Kobaisi, R. J. Crawford, E. P. Ivanova, ACS Nano 2015, 9, 8458.
- 8a) G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46, 3256; b) J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, Z. Liu, J. Am. Chem. Soc. 2015, 137, 7596; c) Z. Y. Jia, Y. J. Li, Z. C. Zuo, H. B. Liu, C. S. Huang, Y. L. Li, Acc. Chem. Res. 2017, 50, 2470.
- 9Y. J. Li, L. Xu, H. B. Liu, Y. L. Li, Chem. Soc. Rev. 2014, 43, 2572.
- 10a) S. Iijima, Nature 1991, 354, 56; b) M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535.
- 11K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 12a) C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, Y. Li, Chem. Rev. 2018, 118, 7744; b) X. Gao, H. Liu, D. Wang, J. Zhang, Chem. Soc. Rev. 2019, 48, 908.
- 13a) M. Long, L. Tang, D. Wang, Y. Li, Z. Shuai, ACS Nano 2011, 5, 2593; b) K. Srinivasu, S. K. Ghosh, J. Phys. Chem. C 2012, 116, 5951; c) S. Zhang, H. Liu, C. Huang, G. Cui, Y. Li, Chem. Commun. 2015, 51, 1834; d) J. He, N. Wang, Z. Cui, H. Du, L. Fu, C. Huang, Z. Yang, X. Shen, Y. Yi, Z. Tu, Y. Li, Nat. Commun. 2017, 8, 1172.
- 14a) S. Wang, L. Yi, J. E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, Y. Li, Small 2012, 8, 265;
b) Z. Jin, Q. Zhou, Y. Chen, P. Mao, H. Li, H. Liu, J. Wang, Y. Li, Adv. Mater. 2016, 28, 3697;
c) Y. S. Zhao, H. J. Tang, N. L. Yang, D. Wang, Adv. Sci. 2018, 5, 1801836.
10.1002/advs.201801836 Google Scholar
- 15a) C. Wang, P. Yu, S. Guo, L. Mao, H. Liu, Y. Li, Chem. Commun. 2016, 52, 5629; b) X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, J. Zhang, Adv. Mater. 2016, 28, 168; c) R. Liu, J. Y. Zhou, X. Gao, J. Q. Li, Z. Q. Xie, Z. Z. Li, S. Q. Zhang, L. M. Tong, J. Zhang, Z. F. Liu, Adv. Electron. Mater. 2017, 3, 6; d) H. Yan, S. Guo, F. Wu, P. Yu, H. Liu, Y. Li, L. Mao, Angew. Chem., Int. Ed. 2018, 57, 3922; e) J. F. Li, Y. H. Chen, J. Gao, Z. C. Zuo, Y. J. Li, H. B. Liu, Y. Li, ACS Appl. Mater. Interfaces 2019, 11, 2591.
- 16a) J. Liu, C. Chen, Y. Zhao, Adv. Mater. 2019, 31, 1804386; b) S. Li, Y. Chen, H. Liu, Y. Wang, L. Liu, F. Lv, Y. Li, S. Wang, Chem. Mater. 2017, 29, 6087; c) N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, D. Wang, Adv. Mater. 2017, 29, 1606755; d) J. Jin, M. Guo, J. Liu, J. Liu, H. Zhou, J. Li, L. Wang, H. Liu, Y. Li, Y. Zhao, C. Chen, ACS Appl. Mater. Interfaces 2018, 10, 8436.
- 17a) T. Zheng, Y. Gao, X. Deng, H. Liu, J. Liu, R. Liu, J. Shao, Y. Li, L. Jia, ACS Appl. Mater. Interfaces 2018, 10, 32946; b) Y. Zhang, W. Liu, Y. Li, Y.-W. Yang, A. Dong, Y. Li, iScience 2019, 19, 662.
- 18S. Q. Zhang, J. Y. Wang, Z. Z. Li, R. Q. Zhao, L. M. Tong, Z. F. Liu, J. Zhang, Z. R. Liu, J. Phys. Chem. C 2016, 120, 10605.
- 19H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao, J. Am. Chem. Soc. 2015, 137, 5260.
- 20I. E. M. Carpio, C. M. Santos, X. Wei, D. F. Rodrigues, Nanoscale 2012, 4, 4746.
- 21V. W. Rowlett, V. Mallampalli, A. Karlstaedt, W. Dowhan, H. Taegtmeyer, W. Margolin, H. Vitrac, J. Bacteriol. 2017, 199, 22.
- 22Z. Gu, Z. Yang, B. Luan, X. Zhou, L. Hong, H. Zhou, J. Luo, R. Zhou, J. Phys. Chem. C 2017, 121, 2444.
- 23J. N. Chen, H. Peng, X. P. Wang, F. Shao, Z. D. Yuan, H. Y. Han, Nanoscale 2014, 6, 1879.
- 24a) Y. Y. Zhang, Q. X. Pei, C. M. Wang, Appl. Phys. Lett. 2012, 101, 081909; b) Q. Yue, S. Chang, J. Kang, S. Qin, J. Li, J. Phys. Chem. C 2013, 117, 14804.
- 25C. Z. Chen, S. L. Cooper, Biomaterials 2002, 23, 3359.
- 26a) H. Li, K. Fierens, Z. Zhang, N. Vanparijs, M. J. Schuijs, K. Van Steendam, N. Feiner Gracia, R. De Rycke, T. De Beer, A. De Beuckelaer, S. De Koker, D. Deforce, L. Albertazzi, J. Grooten, B. N. Lambrecht, B. G. De Geest, ACS Appl. Mater. Interfaces 2016, 8, 1147; b) C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M. L. H. Green, R. B. Sim, Mol. Immunol. 2006, 43, 193; c) Z. S. Yu, Y. Y. Gao, X. G. Wang, G. Q. Zhou, S. W. Zeng, J. L. Chen, Chin. J. Chem. Phys. 2018, 31, 85.
- 27X. Hu, C. Hu, J. Qu, Appl. Catal., B 2006, 69, 17.
- 28a) Y. Liu, Y. Zhao, B. Sun, C. Chen, Acc. Chem. Res. 2013, 46, 702; b) S. C. Smith, D. F. Rodrigues, Carbon 2015, 91, 122.
- 29M. Liang, M. Zhang, S. Yu, Q. Wu, K. Ma, Y. Chen, X. Liu, C. Li, F. Wang, Small 2020, 16, 1905938.
- 30a) R. K. Kulis-Horn, M. Persicke, J. Kalinowski, J. Biotechnol. 2015, 206, 26; b) M. S. Alphey, G. Fisher, Y. Ge, E. R. Gould, T. F. G. Machado, H. Liu, G. J. Florence, J. H. Naismith, R. G. da Silva, ACS Catal. 2018, 8, 5601.
- 31B. N. Ames, R. G. Martin, B. J. Garry, J. Biol. Chem. 1961, 236, 2019.
- 32G. L. Ellman, Arch. Biochem. Biophys. 1959, 82, 70.