SnO2 Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage
Yong Cheng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103 China
Search for more papers by this authorShaohua Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Lin Zhou
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLimin Chang
Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103 China
Search for more papers by this authorWanqiang Liu
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Dongming Yin
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Zheng Yi
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLimin Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
Search for more papers by this authorYong Cheng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103 China
Search for more papers by this authorShaohua Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Lin Zhou
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLimin Chang
Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103 China
Search for more papers by this authorWanqiang Liu
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Dongming Yin
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Zheng Yi
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLimin Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 China
Search for more papers by this authorAbstract
SnO2 has been considered as a promising anode material for lithium-ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low-reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N-doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self-polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N-doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC-2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g−1 at 0.1 A g−1 after 100 cycles and a long life-span with a capacity of 753 mAh g−1 after 1500 cycles at 1 A g−1. The SnO2/NC-2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g−1 at 1 A g−1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202000681-sup-0001-SuppMat.pdf819.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 2J. B. Goodenough, Energy Environ. Sci. 2014, 7, 14.
- 3B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.
- 4M. Liu, S. Zhang, H. C. Dong, X. Chen, S. Gao, Y. P. Sun, W. H. Li, J. Q. Xu, L. W. Chen, A. B. Yuan, W. Lu, ACS Sustainable Chem. Eng. 2019, 7, 4195.
- 5D. B. Xiong, X. F. Li, Z. M. Bai, S. G. Lu, Small 2018, 14, 1703419.
- 6X. J. Liu, Y. C. Hao, J. Shu, H. M. K. Sari, L. X. Lin, H. R. Kou, J. W. Li, W. Liu, B. Yan, D. J. Li, J. J. Zhang, X. F. Li, Nano Energy 2019, 57, 414.
- 7J. Qin, H. M. K. Sari, X. Wang, H. Yang, J. Zhang, X. Li, Nano Energy 2020, 71, 104594.
- 8X. Yang, R. Y. Zhang, J. Zhao, Z. X. Wei, D. X. Wang, X. F. Bie, Y. Gao, J. Wang, F. Du, G. Chen, Adv. Energy Mater. 2018, 8, 1701827.
- 9D. X. Yu, Q. Pang, Y. Gao, Y. J. Wei, C. Z. Wang, G. Chen, F. Du, Energy Storage Mater. 2018, 11, 1.
- 10Y. Cheng, Q. Li, C. L. Wang, L. S. Sun, Z. Yi, L. M. Wang, Small 2017, 13, 1701993.
- 11X. Zhao, M. Luo, W. X. Zhao, R. M. Xu, Y. Liu, H. Shen, ACS Appl. Mater. Interfaces 2018, 10, 38006.
- 12Y. Yang, Z. Z. Pan, Y. Y. Wang, Y. C. Ma, C. Li, Y. J. Lu, X. L. Wu, Nanoscale 2019, 11, 14959.
- 13W. Li, M. Zhou, H. M. Li, K. L. Wang, S. J. Cheng, K. Jiang, Energy Environ. Sci. 2015, 8, 2916.
- 14T. Z. Yang, T. Qian, M. F. Wang, X. W. Shen, N. Xu, Z. Z. Sun, C. L. Yan, Adv. Mater. 2016, 28, 539.
- 15C. J. Chen, Y. W. Wen, X. L. Hu, X. L. Ji, M. Y. Yan, L. Q. Mai, P. Hu, B. Shan, Y. H. Huang, Nat. Commun. 2015, 6, 6929.
- 16L. Yu, H. Hu, H. B. Wu, X. W. Lou, Adv. Mater. 2017, 29, 1604563.
- 17S. H. Guo, J. Yi, Y. Sun, H. S. Zhou, Energy Environ. Sci. 2016, 9, 2978.
- 18Z. L. Jian, B. Zhao, P. Liu, F. J. Li, M. B. Zheng, M. W. Chen, Y. Shi, H. S. Zhou, Chem. Commun. 2014, 50, 1215.
- 19F. Wang, C. C. Lu, Y. F. Qin, C. C. Liang, M. S. Zhao, S. C. Yang, Z. B. Sun, X. P. Song, J. Power Sources 2013, 235, 67.
- 20S. B. Ni, X. H. Lv, J. L. Ma, X. L. Yang, L. L. Zhang, J. Power Sources 2014, 270, 564.
- 21M. N. Obrovac, V. L. Chevrier, Chem. Rev. 2014, 114, 11444.
- 22Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 1997, 276, 1395.
- 23Z. M. Wang, Y. Cheng, Q. Li, L. M. Chang, L. M. Wang, J. Power Sources 2018, 389, 214.
- 24Z. Yi, Q. G. Han, X. Li, Y. M. Wu, Y. Cheng, L. M. Wang, Chem. Eng. J. 2017, 315, 101.
- 25S. S. Yao, J. Cui, J. Q. Huang, Z. H. Lu, Y. Deng, W. G. Chong, J. X. Wu, M. Ihsan Ul Haq, F. Ciucci, J. K. Kim, Adv. Energy Mater. 2018, 8, 1800710.
- 26S. B. Wang, Y. J. Fang, X. Wang, X. W. Lou, Angew. Chem., Int. Ed. 2019, 58, 760.
- 27B. H. Qu, C. Z. Ma, G. Ji, C. H. Xu, J. Xu, Y. S. Meng, T. H. Wang, J. Y. Lee, Adv. Mater. 2014, 26, 3854.
- 28J. I. Lee, J. H. Song, Y. Cha, S. F. Fu, C. Z. Zhu, X. L. Li, Y. H. Lin, M. K. Song, Nano Res. 2017, 10, 4398.
- 29Z. Li, J. Ding, H. L. Wang, K. Cui, T. Stephenson, D. Karpuzov, D. Mitlin, Nano Energy 2015, 15, 369.
- 30L. X. Yin, S. M. Chai, F. F. Wang, J. F. Huang, J. Y. Li, C. Q. Liu, X. G. Kong, Ceram. Int. 2016, 42, 9433.
- 31Y. Wang, H. C. Zeng, J. Y. Lee, Adv. Mater. 2006, 18, 645.
- 32M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, H. K. Liu, Angew. Chem., Int. Ed. 2007, 46, 750.
- 33C. Guan, X. H. Wang, Q. Zhang, Z. X. Fan, H. Zhang, H. J. Fan, Nano Lett. 2014, 14, 4852.
- 34C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang, J. Z. Jiang, J. Am. Chem. Soc. 2010, 132, 46.
- 35Z. Y. Wang, D. Y. Luan, F. Y. C. Boey, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 4738.
- 36X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater. 2006, 18, 2325.
- 37Y. J. Hong, M. Y. Son, Y. C. Kang, Adv. Mater. 2013, 25, 2279.
- 38S. J. Han, B. C. Jang, T. Kim, S. M. Oh, T. Hyeon, Adv. Funct. Mater. 2005, 15, 1845.
- 39W. H. Xie, L. L. Gu, F. Y. Xia, B. L. Liu, X. Y. Hou, Q. Wang, D. Q. Liu, D. Y. He, J. Power Sources 2016, 327, 21.
- 40D. e. Pham-Cong, J. S. Park, J. H. Kim, J. Kim, P. V. Braun, J. H. Choi, S. J. Kim, S. Y. Jeong, C. R. Cho, Carbon 2017, 111, 28.
- 41J. Cui, Z. L. Xu, S. S. Yao, J. Q. Huang, J. Q. Huang, S. Abouali, M. A. Garakani, X. H. Ning, J. K. Kim, J. Mater. Chem. A 2016, 4, 10964.
- 42H. G. Wang, Q. Wu, Y. H. Wang, X. Wang, L. L. Wu, S. Y. Song, H. J. Zhang, Adv. Energy Mater. 2019, 9, 1802993.
- 43W. Q. Yao, S. B. Wu, L. Zhan, Y. L. Wang, Chem. Eng. J. 2019, 361, 329.
- 44C. Ma, J. L. Jiang, Y. J. Han, X. Y. Gong, Y. Yang, G. Yang, Composites, Part B 2019, 169, 109.
- 45X. S. Zhou, L. Yu, X. W. Lou, Adv. Energy Mater. 2016, 6, 1600451.
- 46Z. Z. Cao, H. Y. Yang, P. Dou, C. Wang, J. Zheng, X. H. Xu, Electrochim. Acta 2016, 209, 700.
- 47L. Yang, T. Dai, Y. C. Wang, D. G. Xie, R. L. Narayan, J. Li, X. H. Ning, Nano Energy 2016, 30, 885.
- 48H. J. Wang, X. Y. Jiang, Y. Q. Chai, X. Yang, R. Yuan, J. Power Sources 2018, 379, 191.
- 49B. K. Cao, Z. Q. Liu, C. Y. Xu, J. T. Huang, H. T. Fang, Y. Chen, J. Power Sources 2019, 414, 233.
- 50H. K. Wang, J. K. Wang, D. X. Cao, H. Y. Gu, B. B. Li, X. Lu, X. G. Han, A. L. Rogach, C. M. Niu, J. Mater. Chem. A 2017, 5, 6817.
- 51L. Y. Yang, S. T. Li, J. Liu, K. J. Zhu, S. L. Liu, M. Lei, J. Mater. Chem. A 2017, 5, 1629.
- 52J. Qin, N. Q. Zhao, C. S. Shi, E. Z. Liu, F. He, L. Y. Ma, Q. Y. Li, J. J. Li, C. N. He, J. Mater. Chem. A 2017, 5, 10946.
- 53K. L. Ai, Y. L. Liu, C. P. Ruan, L. H. Lu, G. Q. Lu, Adv. Mater. 2013, 25, 998.
- 54J. Yang, L. H. Xi, J. J. Tang, F. Chen, L. L. Wu, X. Y. Zhou, Electrochim. Acta 2016, 217, 274.
- 55J. Yue, W. P. Wang, N. N. Wang, X. F. Yang, J. K. Feng, J. Yang, Y. T. Qian, J. Mater. Chem. A 2015, 3, 23194.
- 56T. Shi, X. X. Kuai, W. C. Zhu, K. Tian, H., Lu, X., Huang, L. J. Gao, J. Q. Zhao, J. Alloys Compd. 2019, 775, 790.
- 57X. Q. Yang, H. Huang, G. Q. Zhang, X. X. Li, D. C. Wu, R. W. Fu, Mater. Chem. Phys. 2015, 149-150, 657.
- 58B. B. Jiang, Y. J. He, B. Li, S. Q. Zhao, S. Wang, Y. B. He, Z. Q. Lin, Angew. Chem., Int. Ed. 2017, 56, 1869.
- 59Y. Cheng, Z. Yi, C. L. Wang, Y. M. Wu, L. M. Wang, Chem. Eng. J. 2017, 330, 1035.
- 60Z. Q. Huang, H. Y. Gao, J. Ju, J. G. Yu, Y. U. Kwon, Y. N. Zhao, Electrochim. Acta 2020, 331, 135297.
- 61R. Z. Hu, Y. P. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. H. Yang, L. C. Yang, M. Zhu, Adv. Mater. 2017, 29, 1605006.
- 62V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 63V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597.
- 64H. Zhang, P. Zong, M. Chen, H. Jin, Y. Bai, S. W. Li, F. Ma, H. Xu, K. Lian, ACS Nano 2019, 13, 3054.
- 65J. X. Wang, G. B. Zhang, Z. M. Liu, H. K. Li, Y. Liu, Z. X. Wang, X. H. Li, K. M. Shih, L. Q. Mai, Nano Energy 2018, 44, 272.
- 66G. Ali, S. A. Patil, S. Mehboob, M. Ahmad, H. Y. Ha, H. S. Kim, K. Y. Chung, J. Power Sources 2019, 419, 229.
- 67J. Xie, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, X. B. Zhao, G. S. Cao, Solid State Ionics 2010, 181, 1611.
- 68L. M. Chang, Z. Yi, Z. M. Wang, L. M. Wang, Y. Cheng, Appl. Surf. Sci. 2019, 484, 646.
- 69X. Ao, J. J. Jiang, Y. J. Ruan, Z. S. Li, Y. Zhang, J. W. Sun, C. D. Wang, J. Power Sources 2017, 359, 340.
- 70W. H. Chen, K. M. Song, L. W. Mi, X. M. Feng, J. M. Zhang, S. Z. Cui, C. T. Liu, J. Mater. Chem. A 2017, 5, 10027.
- 71R. S. Kalubarme, J. Y. Lee, C. J. Park, ACS Appl. Mater. Interfaces 2015, 7, 17226.
- 72X. Li, X. H. Sun, Z. W. Gao, X. D. Hu, J. D. Guo, S. Cai, R. S. Guo, H. M. Ji, C. M. Zheng, W. B. Hu, Appl. Surf. Sci. 2018, 433, 713.