Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells
Hui Chen
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorQiang Luo
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorTao Liu
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorJing Ren
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
Search for more papers by this authorShuang Li
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025 P. R. China
Search for more papers by this authorMeiqian Tai
School of Material Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHong Lin
School of Material Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHongcai He
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
Search for more papers by this authorJinshu Wang
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
Search for more papers by this authorCorresponding Author
Ning Wang
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
E-mail: [email protected]Search for more papers by this authorHui Chen
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorQiang Luo
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorTao Liu
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorJing Ren
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
Search for more papers by this authorShuang Li
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025 P. R. China
Search for more papers by this authorMeiqian Tai
School of Material Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHong Lin
School of Material Science and Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHongcai He
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
Search for more papers by this authorJinshu Wang
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
Search for more papers by this authorCorresponding Author
Ning Wang
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
E-mail: [email protected]Search for more papers by this authorAbstract
Minimization of defects and ion migration in organic–inorganic lead halide perovskite films is desirable for obtaining photovoltaic devices with high power conversion efficiency (PCE) and long-term stability. However, achieving this target is still a challenge due to the lack of efficient multifunctional passivators. Herein, to address this issue, n-type goethite (FeOOH) quantum dots (QDs) are introduced into the perovskite light-absorption layer for achieving efficient and stable perovskite solar cells (PSCs). It is found that the iron, oxygen, and hydroxyl of FeOOH QDs can interact with iodine, lead, and methylamine, respectively. As a result, the crystallization kinetics process can be retarded, thereby resulting in high quality perovskite films with large grain size. Meanwhile, the trap states of perovskite can be effectively passivated via interaction with the under-coordinated metal (Pb) cations, halide (I) anions on the perovskite crystal surface. Consequently, the PSCs with FeOOH QDs achieve a high efficiency close to 20% with negligible hysteresis. Most strikingly, the long-term stability of PSCs is significantly enhanced. Furthermore, compared with the CH3NH3PbI3-based device, a higher PCE of 21.0% is achieved for the device assembled with a Cs0.05FA0.81MA0.14PbBr0.45I2.55 perovskite layer.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201904372-sup-0001-SuppMat.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
- 2W. Zhang, G. E. Eperon, H. J. Snaith, Nat. Energy 2016, 1, 16048.
- 3J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
- 4P. Gao, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci. 2014, 7, 2448.
- 5H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623.
- 6X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
- 7W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
- 8M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J. P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K. H. Dahmen, F. D. Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Grätzel, M. K. Nazeeruddin, Nat. Energy 2016, 1, 15017.
- 9W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730.
- 10W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. Il. Seok, Science 2017, 356, 1376.
- 11Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki, H. P. Steinrück, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec, Science 2017, 358, 1192.
- 12 National Renewable Energy Laboratory, Best research-cell efficiencies chart, www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed: August 2019).
- 13G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 14S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 15C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, V. Sundstrom, J. Am. Chem. Soc. 2014, 136, 5189.
- 16Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 17B. Conings, L. Baeten, C. D. Dobbelaere, J. D'Haen, J. Manca, H. G. Boyen, Adv. Mater. 2014, 26, 2041.
- 18C. Qin, T. Matsushima, T. Fujihara, C. Adachi, Adv. Mater. 2017, 29, 1603808.
- 19A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, Adv. Funct. Mater. 2014, 24, 3250.
- 20Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 2014, 14, 4158.
- 21T. J. Jacobsson, J. P. Correa-Baena, E. H. Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J. E. Moser, H. Rensmo, A. Hagfeldt, J. Am. Chem. Soc. 2016, 138, 10331.
- 22F. Liu, Q. Dong, M. K. Wong, A. B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W. K. Chan, J. Wang, A. M. C. Ng, C. Liao, H. Li, K. Shih, C. Wei, H. Su, J. Dai, Adv. Energy Mater. 2016, 6, 1502206.
- 23B. W. Park, N. Kedem, M. Kulbak, D. Y. Lee, W. S. Yang, N. J. Jeon, J. Seo, G. Kim, K. J. Kim, T. J. Shin, G. Hodes, D. Cahen, S. Il. Seok, Nat. Commun. 2018, 9, 3301.
- 24X. Wen, Y. Feng, S. Huang, F. Huang, Y. Cheng, M. Green, A. Ho-Baillie, J. Mater. Chem. C 2016, 4, 793.
- 25X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, X. Y. Zhu, J. Am. Chem. Soc. 2015, 137, 2089.
- 26G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 2015, 3, 8970.
- 27Y. Yuan, J. Huang, Acc. Chem. Res. 2016, 49, 286.
- 28J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 2015, 8, 2118.
- 29Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Energy Environ. Sci. 2017, 10, 516.
- 30J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J. P. Sun, X. Lan, L. Quan, D. Kim, I. G. Hill, P. Maksymovych, E. H. Sargent, Nat. Commun. 2015, 6, 7081.
- 31M. Hadadian, J. P. Correa-Baena, E. K. Goharshadi, A. Ummadisingu, J. Y. Seo, J. Luo, S. Gholipour, S. M. Zakeeruddin, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt, Adv. Mater. 2016, 28, 8681.
- 32S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, J. Am. Chem. Soc. 2017, 139, 7504.
- 33Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. Zeng, X. Zhan, J. Huang, Adv. Mater. 2017, 29, 1604545.
- 34L. Jiang, Z. Wang, M. Li, C. Zhang, Q. Ye, K. Hu, D. Lu, P. Fang, L. Liao, Adv. Funct. Mater. 2018, 28, 1705875.
- 35P. Qin, G. Yang, Z. Ren, S. H. Cheung, S. K. So, L. Chen, J. Hao, J. Hou, G. Li, Adv. Mater. 2018, 30, 1706126.
- 36T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Adv. Mater. 2018, 30, 1706576.
- 37X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
- 38Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Adv. Mater. 2017, 29, 1701073.
- 39V. Nandal, P. R. Nair, ACS Nano 2017, 11, 11505.
- 40C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, S. Huettner, Adv. Mater. 2016, 28, 2446.
- 41J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 2015, 8, 2118.
- 42W. Huang, S. Sadhu, S. Ptasinska, Chem. Mater. 2017, 29, 8478.
- 43L. Liu, J. A. McLeod, R. Wang, P. Shen, S. Duhm, Appl. Phys. Lett. 2015, 107, 061904.
- 44L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao, P. Sun, T. Huang, J. Xue, J. W. Lee, C. Zhu, Y. Huang, Y. Li, Y. Yang, J. Am. Chem. Soc. 2018, 140, 17255.
- 45Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, L. Han, Nat. Energy 2016, 1, 16148.
- 46N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano 2014, 8, 9815.
- 47H. L. Hsu, H. T. Hsiao, T. Y. Juang, B. Jiang, S. Chen, R. Jeng, C. Chen, Adv. Energy Mater. 2018, 8, 1802323.
- 48C. Li, J. Sleppy, N. Dhasmana, M. Soliman, L. Tetard, J. Thomas, J. Mater. Chem. A 2016, 4, 11648.
- 49W. Li, H. Dong, X. Guo, N. Li, J. Li, G. Niu, L. Wang, J. Mater. Chem. A 2014, 2, 20105.
- 50D. Bi, X. Li, J. V. Milić, D. J. Kubicki, N. Pellet, J. Luo, T. LaGrange, P. Mettraux, L. Emsley, S. M. Zakeeruddin, M. Grätzel, Nat. Commun. 2018, 9, 4482.
- 51M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. Cheng, L. Spiccia, Angew. Chem., Int. Ed. 2014, 53, 9898.
- 52Z. Liu, J. Hu, H. Jiao, L. Li, G. Zheng, Y. Chen, Y. Huang, Q. Zhang, C. Shen, Q. Chen, H. Zhou, Adv. Mater. 2017, 29, 1606774.
- 53Y. Lou, M. Xu, L. Zhang, Z. Wang, S. Naka, H. Okada, L. Liao, Org. Electron. 2013, 14, 2698.
- 54L. Zhu, C. Chen, F. Li, Z. Shen, Y. Weng, Q. Huang, M. Wang, J. Mater. Chem. A 2019, 7, 1124.
- 55C. Chen, Y. Zhai, F. Li, F. Tan, G. Yue, W. Zhang, M. Wang, J. Power Sources 2017, 341, 396.
- 56J. Li, Q. Dong, N. Li, L. Wang, Adv. Energy Mater. 2017, 7, 1602922.