Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries
Chengyi Wang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorQinming Zhang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorXin Zhang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorXin-Gai Wang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Zhaojun Xie
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zhen Zhou
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
E-mail: [email protected], [email protected]Search for more papers by this authorChengyi Wang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorQinming Zhang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorXin Zhang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorXin-Gai Wang
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Zhaojun Xie
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zhen Zhou
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350 China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Li-CO2 batteries are promising energy storage systems by utilizing CO2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO2 reduction and evolution activities. The Li-CO2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201800641-sup-0001-S1.pdf766.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Li, T. Zhang, H. Zhou, Energy Environ. Sci. 2013, 6, 1125.
- 2P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
- 3C. Gough, Int. J. Greenhouse Gas Control 2008, 2, 155.
- 4X. Li, S. Yang, N. Feng, P. He, H. Zhou, Chin. J. Catal. 2016, 37, 1016.
- 5Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Adv. Mater. 2017, 29, 1605891.
- 6S. Xu, S. K. Das, L. A. Archer, RSC Adv. 2013, 3, 6656.
- 7Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou, Z. Xie, J. Wei, Z. Zhou, Angew. Chem., Int. Ed. 2015, 54, 6550.
- 8Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Energy Environ. Sci. 2014, 7, 677.
- 9X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z. Xie, J. Wei, Z. Zhou, Chem. Commun. 2015, 51, 14636.
- 10S. Li, Y. Dong, J. Zhou, Y. Liu, J. Wang, X. Gao, Y. Han, P. Qi, B. Wang, Energy Environ. Sci. 2018, 11, 1318.
- 11S. Yang, Y. Qiao, P. He, Y. Liu, Z. Cheng, J.-J. Zhu, H. Zhou, Energy Environ. Sci. 2017, 10, 972.
- 12Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang, P. He, H. Zhou, Joule 2017, 1, 359.
- 13C. Ling, R. Zhang, K. Takechi, F. Mizuno, J. Phys. Chem. C 2014, 118, 26591.
- 14Z. Zhao, J. Huang, Z. Peng, Angew. Chem., Int. Ed. 2018, 57, 3874.
- 15L. Qie, Y. Lin, J. W. Connell, J. Xu, L. Dai, Angew. Chem., Int. Ed. 2017, 56, 6970.
- 16X.-G. Wang, C. Wang, Z. Xie, X. Zhang, Y. Chen, D. Wu, Z. Zhou, ChemElectroChem 2017, 4, 2145.
- 17Y. Hou, J. Wang, L. Liu, Y. Liu, S. Chou, D. Shi, H. Liu, Y. Wu, W. Zhang, J. Chen, Adv. Funct. Mater. 2017, 27, 1700564.
- 18Q.-C. Zhu, S.-M. Xu, Z.-P. Cai, M. M. Harris, K.-X. Wang, J.-S. Chen, Energy Storage Mater. 2017, 7, 209.
- 19Z. Zhang, X.-G. Wang, X. Zhang, Z. Xie, Y.-N. Chen, L. Ma, Z. Peng, Z. Zhou, Adv. Sci. 2018, 5, 1700567.
- 20X. Zhang, C. Y. Wang, H. H. Li, X. G. Wang, Y. N. Chen, Z. J. Xie, Z. Zhou, J. Mater. Chem. A 2018, 6, 2792.
- 21Z. Zhang, Z. Zhang, K. Cao, P. Liu, Z. Zhou, J. Mater. Chem. A 2018, 6, 3218.
- 22J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L. A. Curtiss, K. Amine, Nature 2016, 529, 377.
- 23W. Zhou, Y. Cheng, X. Yang, B. Wu, H. Nie, H. Zhang, H. Zhang, J. Mater. Chem. A 2015, 3, 14556.
- 24S. Song, W. Xu, J. Zheng, L. Luo, M. H. Engelhard, M. E. Bowden, B. Liu, C. M. Wang, J. G. Zhang, Nano Lett. 2017, 17, 1417.
- 25J.-W. Jung, C.-L. Lee, S. Yu, I.-D. Kim, J. Mater. Chem. A 2016, 4, 703.
- 26M. Inagaki, Y. Yang, F. Kang, Adv. Mater. 2012, 24, 2547.
- 27K. R. Yoon, K. Shin, J. Park, S. H. Cho, C. Kim, J. W. Jung, J. Y. Cheong, H. R. Byon, H. M. Lee, I. D. Kim, ACS Nano 2018, 12, 128.
- 28X. Zhang, C. Wang, Y.-N. Chen, X.-G. Wang, Z. Xie, Z. Zhou, J. Power Sources 2018, 377, 136.
- 29H. T. Bui, D. Y. Kim, D. W. Kim, J. Suk, Y. Kang, Carbon 2018, 130, 94.
- 30Y. Cao, H. Lu, Q. Hong, J. Bai, J. Wang, X. Li, J. Power Sources 2017, 368, 78.
- 31H. Xue, X. Mu, J. Tang, X. Fan, H. Gong, T. Wang, J. He, Y. Yamauchi, J. Mater. Chem. A 2016, 4, 9106.
- 32J. K. Papp, J. D. Forster, C. M. Burke, H. W. Kim, A. C. Luntz, R. M. Shelby, J. J. Urban, B. D. McCloskey, J. Phys. Chem. Lett. 2017, 8, 1169.
- 33S. Gowda, A. Brunet, G. Wallraff, B. McCloskey, J. Phys. Chem. Lett. 2013, 4, 276.
- 34C. Li, Z. Guo, B. Yang, Y. Liu, Y. Wang, Y. Xia, Angew. Chem., Int. Ed. 2017, 56, 9126.