Ultraviolet Photoluminescence of Carbon Nanospheres and its Surface Plasmon-Induced Enhancement
Corresponding Author
Zhixing Gan
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorPengfei Pan
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Zhihui Chen
Key Lab of Advanced Transducers and Intelligent Control Systems, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorMing Meng
School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, 466001 China
Search for more papers by this authorHao Xu
Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Zhizhou Yu
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorChenliang Chang
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorYongchun Tao
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Zhixing Gan
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorPengfei Pan
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Zhihui Chen
Key Lab of Advanced Transducers and Intelligent Control Systems, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorMing Meng
School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, 466001 China
Search for more papers by this authorHao Xu
Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Zhizhou Yu
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorChenliang Chang
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorYongchun Tao
Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorAbstract
Ultraviolet (UV) light can be used in versatile applications ranging from photoelectronic devices to biomedical imaging. In the development of new UV light sources, in this study, stable UV emission at ≈350 nm is unprecedentedly obtained from carbon nanospheres (CNSs). The origin of the UV fluorescence is comprehensively investigated via various characterization methods, including Raman and Fourier transform infrared analyses, with comparison to the visible emission of carbon nanodots. Based on the density functional calculations, the UV fluorescence is assigned to the carbon nanostructures bonded to bridging O atoms and dangling –OH groups. Moreover, a twofold enhancement in the UV emission is acquired for Au-carbon core-shell nanospheres (Au-CNSs). This remarkable modification of the UV emission is primarily ascribed to charge transfer between the CNSs and the Au surface.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201704239-sup-0001-S1.pdf4.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron. 2002, 8, 310.
- 2T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Den Baars, S. Nakamura, Appl. Phys. Lett. 2004, 84, 855.
- 3J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, Y. D. Zheng, IEEE Photon. J. 2016, 8, 1600207.
- 4J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, IEEE Photonics Technol. Lett. 2003, 15, 18.
- 5Y. Taniyasu, M. Kasu, T. Makimoto, Nature 2006, 441, 325.
- 6J. Ju, W. Chen, Anal. Chem. 2015, 87, 1903.
- 7K. Hola, Y. Zhang, Y. Wang, E. P. Giannelis, R. Zboril, A. L. Rogach, Nano Today 2014, 9, 590.
- 8Y. H. Yuan, R. S. Li, Q. Wang, Z. L. Wu, J. Wang, H. Liu, C. Z. Huang, Nanoscale 2015, 7, 16841.
- 9Y. Q. Dong, J. W. Shao, C. Q. Chen, H. Li, R. X. Wang, Y. W. Chi, X. M. Lin, G. N. Chen, Carbon 2012, 50, 4738.
- 10X. F. Sun, K. Y. Yin, B. Y. Liu, S. J. Zhou, J. M. Cao, G. P. Zhang, H. G. Li, J. Mater. Chem. C 2017, 5, 4951.
- 11Y. X. Fang, S. J. Guo, D. Li, C. Z. Zhu, W. Ren, S. J. Dong, E. K. Wang, ACS Nano 2012, 6, 400.
- 12X. M. Li, S. L. Zhang, S. A. Kulinich, Y. L. Liu, H. B. Zeng, Sci. Rep. 2015, 4, 4976.
- 13Y. Q. Dong, H. C. Pang, H. B. Yang, C. X. Guo, J. W. Shao, Y. W. Chi, C. M. Li, T. Yu, Angew. Chem., Int. Ed. 2013, 52, 7800.
- 14H. Nie, M. J. Li, Q. S. Li, S. J. Liang, Y. Y. Tan, L. Sheng, W. Shi, S. X. A. Zhang, Chem. Mater. 2014, 26, 3104.
- 15M. J. Krysmann, A. Kelarakis, P. Dallas, E. P. Giannelis, J. Am. Chem. Soc. 2012, 134, 747.
- 16L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, ACS Nano 2012, 6, 5102.
- 17Y. Liu, D. Y. Kim, Chem. Commun. 2015, 51, 4176.
- 18C. Zhu, S. Yang, J. Sun, P. He, N. Y. Yuan, J. Ding, R. Mo, G. Wang, G. Ding, X. Xie, Synth. Met. 2015, 209, 468.
- 19D. Kozawa, Y. Miyauchi, S. Mouri, K. Matsuda, J. Phys. Chem. Lett. 2013, 4, 2035.
- 20Q. S. Mei, K. Zhang, G. J. Guan, B. H. Liu, S. H. Wang, Z. P. Zhang, Chem. Commun. 2010, 46, 7319.
- 21G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, Adv. Mater. 2010, 22, 505.
- 22Z. X. Gan, S. J. Xiong, X. L. Wu, T. Xu, X. B. Zhu, X. Gan, J. H. Guo, J. C. Shen, L. T. Sun, P. K. Chu, Adv. Opt. Mater. 2013, 1, 926.
- 23Y. Choi, B. Kang, J. Lee, S. Kim, G. T. Kim, H. Kang, B. R. Lee, H. Kim, S. H. Shim, G. Lee, O. H. Kwon, B. S. Kim, Chem. Mater. 2016, 28, 6840.
- 24A. Sharma, T. Gadly, S. Neogy, S. K. Ghosh, M. Kumbhakar, J. Phys. Chem. Lett. 2017, 8, 1044.
- 25F. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126.
- 26X. M. Sun, Y. D. Li, Angew. Chem., Int. Ed. 2004, 43, 597.
- 27S. J. Zhu, Q. N. Meng, L. Wang, J. H. Zhang, Y. B. Song, H. Jin, K. Zhang, H. C. Sun, H. Y. Wang, B. Yang, Angew. Chem., Int. Ed. 2013, 52, 3953.
- 28M. Sevilla, A. B. Fuertes, Chem. - Eur. J. 2009, 15, 4195.
- 29H. Nie, M. Li, Q. Li, S. Liang, Y. Sheng, W. Shi, S. X. A. Zhang, Chem. Mater. 2014, 26, 3104.
- 30S. Permogorov, A. Reznitsky, J. Lumin. 1992, 52, 201.
- 31H. P. He, Q. Q. Yu, H. Li, J. Li, J. J. Si, Y. Z. Jin, N. N. Wang, J. P. Wang, J. W. He, X. K. Wang, Y. Zhang, Z. Z. Ye, Nat. Commun. 2016, 7, 10896.
- 32Z. X. Gan, H. Xu, Y. L. Hao, Nanoscale 2016, 8, 7794.
- 33J. A. Yan, M. Y. Chou, Phys. Rev. B 2010, 82, 125403.
- 34Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. X. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, D. Feng, Appl. Phys. Lett. 2012, 101, 013106.
- 35Z. H. Chen, L. N. He, Y. Wang, Z. X. Gan, IEEE Photon. J. 2017, 9, 4500108.
- 36Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, H. Misawa, J. Phys. Chem. Lett. 2010, 1, 2031.
- 37C. Langhammer, Z. Yuan, I. Zoric, B. Kasemo, Nano Lett. 2006, 6, 833.
- 38Z. X. Gan, Z. H. Chen, L. Z. Liu, L. F. Zhang, W. G. Tu, Y. S. Liu, Solar RRL 2017, 1, 1600032.
- 39Y. Lin, C. X. Xu, J. T. Li, G. Y. Zhu, X. Y. Xu, J. Dai, B. P. Wang, Adv. Opt. Mater. 2013, 1, 940.
- 40F. F. Qin, N. Chang, C. X. Xu, Q. X. Zhu, M. Wei, Z. Zhu, F. Chen, J. F. Lu, RSC Adv. 2017, 7, 15071.
- 41C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, H. J. Fan, Appl. Phys. Lett. 2010, 96, 071107.
- 42S. G. Zhang, L. Wen, J. L. Li, F. L. Gao, X. W. Zhang, L. H. Li, G. Q. Li, J. Phys. D: Appl. Phys. 2014, 47, 495103.
- 43G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 44G. Kresse, J. Furthmller, Comput. Mater. Sci. 1996, 6, 15.
- 45J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.