Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction
Daqiang Gao
Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000 P. R. China
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575 Singapore
Search for more papers by this authorBaorui Xia
Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorYanyan Wang
Lanzhou Jinchuan Advanced Materials Technology Co., Ltd., Lanzhou, 730000 P. R. China
Search for more papers by this authorWen Xiao
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575 Singapore
Search for more papers by this authorPinxian Xi
The Research Center of Biomedical Nanotechnology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Desheng Xue
Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jun Ding
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575 Singapore
E-mail: [email protected], [email protected]Search for more papers by this authorDaqiang Gao
Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000 P. R. China
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575 Singapore
Search for more papers by this authorBaorui Xia
Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorYanyan Wang
Lanzhou Jinchuan Advanced Materials Technology Co., Ltd., Lanzhou, 730000 P. R. China
Search for more papers by this authorWen Xiao
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575 Singapore
Search for more papers by this authorPinxian Xi
The Research Center of Biomedical Nanotechnology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Desheng Xue
Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jun Ding
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575 Singapore
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Although transition metal dichalcogenide MoSe2 is recognized as one of the low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER), its thermodynamically stable basal plane and semiconducting property still hamper the electrocatalytic activity. Here, it is demonstrated that the basal plane and edges of 2H-MoSe2 toward HER can be activated by introducing dual-native vacancy. The first-principle calculations indicate that both the Se and Mo vacancies together activate the electrocatalytic sites in the basal plane and edges of MoSe2 with the optimal hydrogen adsorption free energy (ΔGH*) of 0 eV. Experimentally, 2D MoSe2 nanosheet arrays with a large amount of dual-native vacancies are fabricated as a catalytic working electrode, which possesses an overpotential of 126 mV at a current density of 100 mV cm−2, a Tafel slope of 38 mV dec−1, and an excellent long-term durability. The findings pave a rational pathway to trigger the activity of inert MoSe2 toward HER and also can be extended to other layered dichalcogenide.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201704150-sup-0001-S1.pdf4.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T. P. Chen, Nat. Commun. 2015, 7. 10672
- 2Z. Wang, D. Xu, J. Xu, X. Zhang, Chem. Soc. Rev. 2014, 43, 7746.
- 3F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.
- 4K. Liu, H. Zhong, S. Li, Y. Duan, M. Shi, X. Zhang, J. Yan, Q. Jiang, Prog. Mater. Sci. 2018, 92, 64.
- 5J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
- 6J. Xie, H. Qu, J. Xin, X. Zhang, G. Cui, X. Zhang, J. Bao, B. Tang, Y. Xie, Nano Res. 2017, 1
- 7M. Chhetri, U. Gupta, L. Yadgarov, R. Rosentsveig, R. Tenne, C. N. R. Rao, Dalton Trans. 2015, 44, 16399.
- 8H. Zhong, J. Wang, F. Meng, X. Zhang, Angew. Chem. 2016, 128, 10091.
10.1002/ange.201604040 Google Scholar
- 9K. Liu, H. Zhong, F. Meng, X. Zhang, J. Yan, Q. Jiang, Mater. Chem. Front. 2017, 1, 2155.
- 10J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, Energy Environ. Sci. 2016, 9, 2789.
- 11T. Charlie, F. A. Pedersen, J. K. Nørskov, Nano Lett. 2014, 14, 1381.
- 12Y. Xu, L. Wang, X. Liu, S. Zhang, C. Liu, D. Yan, Y. Zeng, Y. Pei, Y. Liu, S. Luo, J. Mater. Chem. A 2016, 4, 16524.
- 13T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
- 14M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
- 15K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, ACS Nano 2014, 8, 7078.
- 16Y. Jiang, X. Li, S. Yu, L. Jia, X. Zhao, C. Wang, Adv. Funct. Mater. 2015, 25, 2693.
- 17Y. Hou, B. Zhang, Z. Wen, S. Cui, X. Guo, Z. He, J. Chen, J. Mater. Chem. A 2014, 2, 13795.
- 18Z. Gholamvand, D. McAteer, C. Backes, N. McEvoy, A. Harvey, N. C. Berner, D. Hanlon, C. Bradley, I. Godwin, A. Rovetta, M. E. G. Lyons, G. S. Duesberg, J. N. Coleman, Nanoscale 2016, 8, 5737.
- 19B. Qu, C. Li, C. Zhu, S. Wang, X. Zhang, Y. Chen, Nanoscale 2016, 8, 16886.
- 20K. Zhang, Y. Zhao, S. Zhang, H. Yu, Y. Chen, P. Gao, C. Zhu, J. Mater. Chem. A 2014, 2, 18715.
- 21J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
- 22D. Y. Chung, S. K. Park, Y. H. Chung, S. H. Yu, D. H. Lim, N. Jung, H. C. Ham, H. Y. Park, Y. Piao, S. J. Yoo, Y. E. Sung, Nanoscale 2014, 6, 2131.
- 23M. Sarno, A. Garamella, C. Cirillo, P. Ciambelli, Chem. Eng. Trans. 2014, 41, 385.
- 24H. Wu, Y. Qiu, J. Zhang, G. Chai, C. Lu, A. Liu, Funct. Mater. Lett. 2016, 09, 1650058.
- 25H. Wang, C. Tsai, D. Kong, K. Chan, F. A. Pedersen, J. K. Nørskov, Y. Cui, Nano Res. 2015, 8, 566.
- 26H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, Y. Cui, Nano Res. 2015, 8, 566.
- 27W. Xiao, P. Liu, J. Zhang, W. Song, Y. P. Feng, D. Gao, J. Ding, Adv. Energy Mater. 2017, 7, 1602086.
- 28P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Gao, D. Xue, ACS Energy Lett. 2017, 2, 745.
- 29X. Huang, M. Leng, W. Xiao, M. Li, J. Ding, T. L. Tan, W. S. V. Lee, J. Xue, Adv. Funct. Mater. 2017, 27, 1604943.
- 30H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. Zheng, Nat. Mater. 2016, 15, 48.
- 31a) U. Gupta, B. S. Naidu, U. Maitra, A. Singh, S. N. Shirodkar, U. V. Waghmare, C. N. R. Rao, APL Mater. 2014, 2, 092802; b) C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, Q. Yan, J. Mater. Chem. A 2014, 2, 5597; c) H. Yu, X. Yu, Y. Chen, S. Zhang, P. Gao, C. Li, Nanoscale 2015, 7, 8731.
- 32B. Qu, X. Yu, Y. Chen, C. Zhu, C. Li, Z. Yin, X. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 14170.
- 33a) O. Lehtinen, H. P. Komsa, A. Pulkin, M. B. Whitwick, M. W. Chen, T. Lehnert, M. J. Mohn, O. V. Yazyev, A. Kis, U. Kaiser, A. V. Krasheninnikov, ACS Nano 2015, 9, 3274; b) A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, M. Terrones, ACS Nano 2013, 7, 5235; c) Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. Ajayan, Nat. Mater. 2014, 13, 1135
- 34H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 2013, 13, 3426
- 35Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
- 36P. Xiao, M. Alam Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci. 2014, 7, 2624.
- 37Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- 38H. Tang, K. Dou, C. C. Kaun, Q. Kuang, S. Yang, J. Mater. Chem. A 2014, 2, 360.
- 39A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, C. Casiraghi, Nano Lett. 2012, 12, 3925.
- 40J. Guo, Y. Shi, X. Bai, X. Wang, T. Ma, J. Mater. Chem. A 2015, 3, 24397.
- 41C. Ataca, S. Ciraci, J. Phys. Chem. C 2011, 115, 13303.
- 42M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, S. I. Khondaker, M. N. Leuenberger, Nanoscale 2014, 6, 10033.
- 43R. Zhang, Y. Li, J. Qi, D. Gao, Nanoscale Res. Lett. 2014, 9, 586.
- 44B. Mao, T. Bao, J. Yu, L. Zheng, J. Qin, W. Yin, M. Cao, Nano Res. 2017, 10, 2667.
- 45A. Shafqat, T. Iqbal, A. Majid, AIP Adv. 2017, 7, 105306.
- 46L. Zhang, T. Wang, L. Sun, Y. Sun, T. Hu, K. Xu, F. Ma, J. Mater. Chem. A 2017, 5, 19752.
- 47S. Mao, Z. Wen, S. Ci, X. Guo, K. K. Ostrikov, J. Chen, Small 2015, 11, 414.
- 48C. Wang, P. Zhang, J. Lei, W. Dong, J. Wang, Electrochim. Acta 2017, 246, 712.
- 49C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, Q. Yan, J. Mater. Chem. A 2014, 2, 5597.
- 50H. Zhou, Y. Wang, R. He, F. Yu, J. Sun, F. Wang, Y. Lan, Z. Ren, S. Chen, Nano Energy 2016, 20, 29.
- 51T. Liu, Q. Liu, A. M. Asiri, Y. Luo, X. Sun, Chem. Commun. 2015, 51, 16683.
- 52C. H. Mu, H. X. Qi, Y. Q. Song, Z. P. Liu, L. X. Ji, J. G. Deng, Y. B. Liao, F. Scarpa, RSC Adv. 2016, 6, 23.
- 53Y. Sun, X. Zhang, B. Mao, M. Cao, Chem. Commun. 2016, 52, 14266.
- 54D. Wang, Z. Pan, Z. Wu, Z. Wang, Z. Liu, J. Power Sources 2014, 264, 229.
- 55J. Xie, Zhang, H. S. Li, R. Wang, X. Sun, M. Zhou, J. F. Zhou, X. W Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
- 56H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschögl, H. N. Alshareef, Nano Lett. 2016, 16, 7718.
- 57H. Shi, Electrochim. Acta 1996, 41, 1633.
- 58A. V. Tripković, K. D. Popović, B. N. Grgur, B. Blizanac, P. N. Ross, N. M. Marković, Electrochim. Acta 2002, 47, 3707.