Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells
Fan Zhang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Jun Song
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorRui Hu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYuren Xiang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorJunjie He
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYuying Hao
College of Physics and Optoelectronics Engineering, Taiyuan University of Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorJiarong Lian
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Bin Zhang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164 P. R. China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorPengju Zeng
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Junle Qu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorFan Zhang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Jun Song
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorRui Hu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYuren Xiang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorJunjie He
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYuying Hao
College of Physics and Optoelectronics Engineering, Taiyuan University of Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorJiarong Lian
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Bin Zhang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164 P. R. China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorPengju Zeng
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Junle Qu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorAbstract
Organic–inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (VOC). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201704007-sup-0001-S1.pdf332.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Grätzel, Nat. Mater. 2014, 13, 838.
- 2S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 3M. Saliba, T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 2016, 354, 206.
- 4L. Meng, J. You, T.F. Gu, Y. Yang, Acc. Chem. Res. 2016, 49, 155.
- 5Best Research Cell Efficiencies, http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg (accessed: October 2017).
- 6A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 7X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
- 8W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
- 9S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
- 10Q. Xue, G. Chen, M. Liu, J. Xiao, Z. Chen, Z. Hu, X. F. Jiang, B. Zhang, F. Huang, W. Yang, H. L. Yip, Y. Cao, Adv. Energy Mater. 2016, 6, 1502021.
- 11Z. Yu, L. C. Sun, Adv. Energy Mater. 2015, 5, 1500213.
- 12M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
- 13G. Chen, F. Zhang, M. Liu, J. Song, J. Lian, P. Zeng, H. L. Yip, W. Yang, B. Zhang, Y. Cao, J. Mater. Chem. A 2017, 5, 17943.
- 14J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, M. Grätzel, Nature 2013, 499, 316.
- 15W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, S. I. Seok, Science 2015, 348, 1234.
- 16D. Bi, C. Yi, J. Luo, J. D. Décoppet, F. Zhang, A. Hagfeldt, M. Grätzel, Nat. Energy 2016, 1, 16142.
- 17X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lina, J. Huang, Nat. Energy 2017, 2, 17102.
- 18H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. S. Duan, Y. Yang, Science 2014, 345, 542.
- 19N. G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1, 16152.
- 20N. Ahn, K. Kwak, M. S. Jang, H. Yoon, B. Y. Lee, M. Choi, Nat. Commun. 2016, 7, 13422.
- 21J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2017, 10, 710.
- 22H. Tan, A. Jain, O. Voznyy, X. Lan, F. Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z. Lu, Z. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.
- 23J. Peng, Y. Wu, W. Ye, D. A. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C. Barugkin, H. T. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M. N. Lockrey, K. J. Weber, K. R. Catchpolea, T. P. White, Energy Environ. Sci. 2017, 10, 1792.
- 24Q. Wang, Y. Shao, Q. Dong, A. Gruverman, J. Huang, Adv. Mater. 2016, 28, 6734.
- 25G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 26K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, Q. Gong, Adv. Mater. 2016, 28, 10718.
- 27F. Zhang, J. Lian, J. Song, Y. Hao, P. Zeng, H. Niu, J. Mater. Chem. A 2016, 4, 3438.
- 28F. Zhang, J. Song, L. Zhang, F. Niu, Y. Hao, P. Zeng, J. Lian, J. Mater. Chem. A 2016, 4, 8554.
- 29Q. Wang, C. Bi, J. Huang, Nano Energy 2015, 15, 275.
- 30J. T. Wang, Z. Wang, S. Pathak, W. Zhang, D. W. deQuilettes, R. J. Nicholas, H. J. Snaith, Energy Environ. Sci. 2016, 9, 2892.
- 31L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, J. Zhang, Y. Zhu, Electrochim. Acta 2016, 196, 328.
- 32P. Pingel, D. Neher, Phys. Rev. B 2013, 87, 115209.
- 33E. F. Aziz, A. Vollmer, S. Eisebitt, W. Eberhardt, P. Pingel, D. Neher, N. Koch, Adv. Mater. 2007, 19, 3257.
- 34W. Li, J. Fan, Y. Mai, L. Wang, Adv. Energy Mater. 2017, 7, 1601433.
- 35M. Yang, Y. Zeng, Z. Li, D. H. Kim, C. S. Jiang, J. Lagemaat, K. Zhu, Phys. Chem. Chem. Phys. 2017, 19, 5043.
- 36V. W. Bergmann, S. Weber, F. J. Ramos, M. K. Nazeeruddin, M. Grätzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Nat. Commun. 2014, 5, 5001.
- 37Q. Guo, Y. Xu, B. Xiao, B. Zhang, E. Zhou, F. Wang, Y. Bai, T. Hayat, A. Alsaedi, Z. Tan, ACS Appl. Mater. Interfaces 2017, 9, 10983.
- 38F. Cai, L. Yang, Y. Yan, J. Zhang, F. Qin, D. Liu, Y. Cheng, Y. Zhou, T. Wang, J. Mater. Chem. A 2017, 5, 9402.
- 39C.-Y. Chang, W.-K. Huang, Y.-C. Chang, K.-T. Lee, C.-T. Chen, J. Mater. Chem. A 2016, 4, 640.