Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback
Ankit
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Search for more papers by this authorNaveen Tiwari
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Search for more papers by this authorMayank Rajput
Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Singapore, 637553
Search for more papers by this authorNguyen Anh Chien
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Search for more papers by this authorCorresponding Author
Nripan Mathews
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Singapore, 637553
E-mail: [email protected]Search for more papers by this authorAnkit
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Search for more papers by this authorNaveen Tiwari
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Search for more papers by this authorMayank Rajput
Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Singapore, 637553
Search for more papers by this authorNguyen Anh Chien
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Search for more papers by this authorCorresponding Author
Nripan Mathews
School of Materials Sciences and Engineering, Nanyang Technological University, Singapore, 639798
Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Singapore, 637553
E-mail: [email protected]Search for more papers by this authorAbstract
Human–machine haptic interaction is typically detected by variations in friction, roughness, hardness, and temperature, which combines to create sensation of surface texture change. Most of the current technologies work to simulate changes in tactile perception (via electrostatic, lateral force fields, vibration motors, etc.) without creating actual topographical transformations. This makes it challenging to provide localized feedback. Here, a new concept for on-demand surface texture augmentation that is capable of physically forming local topographic features in any predesigned pattern is demonstrated. The transparent, flexible, integrable device comprises of a hybrid electrode system with conductive hydrogel, silver nanowires, and conductive polymers with acrylic elastomer as the dielectric layer. Desired surface textures can be controlled by a predesigned pattern of electrodes, which operates as independent or interconnected actuators. Surface features with up to a height of 0.155 mm can be achieved with a transformation time of less than a second for a device area of 18 cm2. High transparency levels of 76% are achieved due to the judicious choice of the electrode and the active elastomer layer. The capability of localized and controlled deformations makes this system highly useful for applications such as display touchscreens, touchpads, braille displays, on-demand buttons, and microfluidic devices.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201702312-sup-0001-S1.pdf839.9 KB | Supplementary |
smll201702312-sup-0001-S1.mp410.1 MB | Supplementary |
smll201702312-sup-0002-S2.mp418 MB | Supplementary |
smll201702312-sup-0003-S3.mp410.8 MB | Supplementary |
smll201702312-sup-0004-S4.mp48 MB | Supplementary |
smll201702312-sup-0005-S5.mp417.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Skedung, M. Arvidsson, J. Y. Chung, C. M. Stafford, B. Berglund, M. W. Rutland, Sci. Rep. 2013, 3, 2617.
- 2I. Poupyrev, S. Maruyama, J. Rekimoto, Proc. 15th Annu. ACM Symp. User Interface Software Technol., ACM, Paris, France 2002, p. 51.
- 3S. Okamoto, H. Nagano, Y. Yamada, IEEE Trans. Haptics 2013, 6, 81.
- 4T. Hui, D. J. Beebe, IEEE Trans. Rehabil. Eng. 1998, 6, 241.
- 5C. L. V. Doren, D. G. Pelli, R. T. Verrillo, J. Acoust. Soc. Am. 1987, 81, 1906.
- 6E. S. Kolesar, R. R. Reston, D. G. Ford, R. C. Fitch, J. Rob. Syst. 1992, 9, 37.
- 7S. Ino, S. Shimizu, T. Odagawa, M. Sato, M. Takahashi, T. Izumi, T. Ifukube, presented at Proc. 1993 2nd IEEE Int. Workshop Rob. Hum. Commun., Tokyo, Japan, 3–5 November 1993.
- 8T. Nara, M. Takasaki, T. Maeda, T. Higuchi, S. Ando, S. Tachi, IEEE Comput. Graphics Appl. 2001, 21, 56.
- 9M. Y. Tsalamlal, N. Ouarti, M. Ammi, presented World Haptics Conf., Daejeon, Korea, 14–17 April 2013.
- 10P. Goethals, D. Reynaerts, H. Van Brussel, 9th Natl. Congr. Theor. Appl. Mech., Brussels, May 2012.
- 11J. C. Yeo, J. Yu, Z. M. Koh, Z. Wang, C. T. Lim, Lab Chip 2016, 16, 3244.
- 12F. Carpi, G. Frediani, S. Tarantino, D. De Rossi, Polym. Int. 2010, 59, 407.
- 13S. Vishniakou, B. W. Lewis, X. Niu, A. Kargar, K. Sun, M. Kalajian, N. Park, M. Yang, Y. Jing, P. Brochu, Z. Sun, C. Li, T. Nguyen, Q. Pei, D. Wang, Sci. Rep. 2013, 3, 2521.
- 14Y. Bar-Cohen, presented at SPIE's 9th Annu. Int. Symp. Smart Struct. Mater. San Diego, California (USA), July 2002.
- 15R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, Science 2000, 287, 836.
- 16S. Rosset, H. R. Shea, Appl. Phys. A 2013, 110, 281.
- 17W. Yuan, H. Li, P. Brochu, X. Niu, Q. Pei, Int. J. Smart Nano Mater. 2010, 1, 40.
- 18H. Phung, C. T. Nguyen, T. D. Nguyen, C. Lee, U. Kim, D. Lee, J.-D. Nam, H. Moon, J. C. Koo, H. R. Choi, Meccanica 2015, 50, 2825.
- 19M. Matysek, P. Lotz, H. F. Schlaak, presented at SPIE Smart Struct. Mater. Nondestr. Eval. Health Monit. San Diego, California (USA), March 2009.
- 20M. Matysek, P. Lotz, K. Flittner, H. F. Schlaak, presented at SPIE Smart Struct. Mater. Nondestr. Eval. Health Monit. San Diego, California (USA), March 2010.
- 21H. Prahlad, R. Pelrine, R. Kornbluh, P. von Guggenberg, S. Chhokar, J. Eckerle, M. Rosenthal, N. Bonwit, presented at Smart Struct. Mater. San Diego, California (USA), March 2005.
- 22A. Ankit, C. A. Nguyen, N. Mathews, presented at SPIE Smart Struct. Mater. Nondestr. Eval. Health Monit. Portland, Oregon (USA), March 2017.
- 23L. J. Romasanta, M. A. Lopez-Manchado, R. Verdejo, Prog. Polym. Sci. 2015, 51, 188.
- 24S. Shian, R. M. Diebold, A. McNamara, D. R. Clarke, Appl. Phys. Lett. 2012, 101, 061101.
- 25S. Shian, R. M. Diebold, D. R. Clarke, Opt. Exp. 2013, 21, 8669.
- 26S. Shian, K. Bertoldi, D. R. Clarke, Adv. Mater. 2015, 27, 6814.
- 27M. Duduta, R. J. Wood, D. R. Clarke, Adv. Mater. 2016, 28, 8058.
- 28U. Kim, J. Kang, C. Lee, H. Y. Kwon, S. Hwang, H. Moon, J. C. Koo, J.-D. Nam, B. H. Hong, J.-B. Choi, H. R. Choi, Nanotechnology 2013, 24, 145501.
- 29C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo, Science 2013, 341, 984.
- 30B. Chen, Y. Bai, F. Xiang, J.-Y. Sun, Y. Mei Chen, H. Wang, J. Zhou, Z. Suo, J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1055.
- 31J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
- 32C.-C. Kim, H.-H. Lee, K. H. Oh, J.-Y. Sun, Science 2016, 353, 682.
- 33V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, J. N. Coleman, Small 2011, 7, 2621.
- 34M. R. Kulkarni, R. A. John, M. Rajput, N. Tiwari, N. Yantara, A. C. Nguyen, N. Mathews, ACS Appl. Mater. Interfaces 2017, 9, 15015.
- 35N. Tiwari, Ankit, M. Rajput, M. R. Kulkarni, R. A. John, N. Mathews, Nanoscale 2017, https://doi.org/10.1039/C7NR05748B.
- 36L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 2010, 4, 2955.
- 37D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.-P. Simonato, Nanotechnology 2013, 24, 452001.
- 38D. Shin, T. Kim, B. T. Ahn, S. M. Han, ACS Appl. Mater. Interfaces 2015, 7, 13557.
- 39W. Gaynor, G. F. Burkhard, M. D. McGehee, P. Peumans, Adv. Mater. 2011, 23, 2905.
- 40C.-H. Liu, X. Yu, Nanoscale Res. Lett. 2011, 6, 75.
- 41T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park, S. M. Han, ACS Appl. Mater. Interfaces 2013, 5, 788.
- 42F. Xu, Y. Zhu, Adv. Mater. 2012, 24, 5117.
- 43T. Araki, R. Mandamparambil, D. M. van Bragt, J. Jiu, H. Koga, J. van den Brand, T. Sekitani, J. M. den Toonder, K. Suganuma, Nanotechnology 2016, 27, 45LT02.
- 44T. Maeno, J. Rob. Soc. Jpn. 2000, 18, 772.
10.7210/jrsj.18.772 Google Scholar
- 45S. J. Bolanowski Jr., G. A. Gescheider, R. T. Verrillo, C. M. Checkosky, J. Acoust. Soc. Am. 1988, 84, 1680.
- 46F. Carpi, I. Anderson, S. Bauer, G. Frediani, G. Gallone, M. Gei, C. Graaf, C. Jean-Mistral Claire, W. Kaal, G. Kofod, M. Kollosche, R. Kornbluh, B. Lassen, M. Matsyek, S. Michel, S. Nowak, B. O'Brien, Q. Pei, R. Pelrine, B. Rechenbach, S. Rosset, H. Shea, Smart Mater. Struct. 2015, 24, 105025.
- 47T. Kikuchi, J. Noma, S. Akaiwa, Y. Ueshima, J. Intell. Mater. Syst. Struct. 2015, 27, 859.