Preservation of Surface Conductivity and Dielectric Loss Tangent in Large-Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations
Corresponding Author
Albert F. Rigosi
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
E-mail: [email protected]Search for more papers by this authorNicholas R. Glavin
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433 USA
Search for more papers by this authorChieh-I Liu
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Graduate Institute of Applied Physics, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYanfei Yang
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Joint Quantum Institute, University of Maryland, College Park, MD, 20742 USA
Search for more papers by this authorJan Obrzut
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorHeather M. Hill
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorJiuning Hu
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorHsin-Yen Lee
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Theiss Research, La Jolla, CA, 92037 USA
Search for more papers by this authorAngela R. Hight Walker
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorCurt A. Richter
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorRandolph E. Elmquist
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorDavid B. Newell
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorCorresponding Author
Albert F. Rigosi
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
E-mail: [email protected]Search for more papers by this authorNicholas R. Glavin
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433 USA
Search for more papers by this authorChieh-I Liu
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Graduate Institute of Applied Physics, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYanfei Yang
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Joint Quantum Institute, University of Maryland, College Park, MD, 20742 USA
Search for more papers by this authorJan Obrzut
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorHeather M. Hill
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorJiuning Hu
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorHsin-Yen Lee
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Theiss Research, La Jolla, CA, 92037 USA
Search for more papers by this authorAngela R. Hight Walker
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorCurt A. Richter
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorRandolph E. Elmquist
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorDavid B. Newell
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899 USA
Search for more papers by this authorAbstract
Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption. Experimental results are reported on the extraction of the surface conductivity and dielectric loss tangent from data taken with a noncontact resonance microwave cavity, assembled with an air-filled, standard R100 rectangular waveguide configuration. By using amorphous boron nitride (a-BN) as an encapsulation layer, stability of EG's electrical properties under ambient laboratory conditions is greatly improved. Moreover, samples are exposed to a variety of environmental and chemical conditions. Both thicknesses of a-BN encapsulation are sufficient to preserve surface conductivity and dielectric loss tangent to within 10% of its previously measured value, a result which has essential importance in the mass production of millimeter-scale graphene devices demonstrating electrical stability.
Supporting Information
Filename | Description |
---|---|
smll201700452-sup-0001-S1.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
- 2K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
- 3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 4Y. Fukuyama, R. E. Elmquist, L.-I. Huang, Y. Yang, F.-H. Liu, N.-H. Kaneko, IEEE Trans. Instrum. Meas. 2015, 64, 1451.
- 5M. A. Real, T. Shen, G. R. Jones, R. E. Elmquist, J. A. Soons, A. V. Davydov, IEEE Trans. Instrum. Meas. 2013, 62, 1454.
- 6R. Ribeiro-Palau, F. Lafont, J. Brun-Picard, D. Kazazis, A. Michon, F. Cheynis, O. Couturaud, C. Consejo, B. Jouault, W. Poirier, F. Schopfer, Nat. Nanotechnol. 2015, 10, 965.
- 7A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T. J. B. M. Janssen, V. Fal'ko, S. Kubatkin, Nat. Nanotechnol. 2010, 5, 186.
- 8T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, V. Fal'ko, Phys. Rev. B 2011, 83, 233402.
- 9F. Lafont, R. Ribeiro-Palau, D. Kazazis, A. Michon, O. Couturaud, C. Consejo, T. Chassagne, M. Zielinski, M. Portail, B. Jouault, F. Schopfer, W. Poirer, Nat. Commun. 2015, 6, 6806.
- 10T. J. B. M. Janssen, S. Rozhko, I. Antonov, A. Tzalenchuk, J. M. Williams, Z. Melhem, H. He, S. Lara-Avila, S. Kubatkin, R. Yakimova, 2D Mater. 2015, 2, 035015.
- 11B. Jeckelmann, B. Jeanneret, Rep. Prog. Phys. 2001, 64, 1603.
- 12A. Hartland, K. Jones, J. M. Williams, B. L. Gallagher, T. Galloway, Phys. Rev. Lett. 1991, 66, 8.
- 13Y. Yang, G. Cheng, P. Mende, I. G. Calizo, R. M. Feenstra, C. Chuang, C.-W. Liu, C.-I. Liu, G. R. Jones, A. R. Hight Walker, R. E. Elmquist, Carbon 2017, 115, 229.
- 14S. Novikov, N. Lebedeva, K. Pierz, A. Satrapinski, IEEE Trans. Instrum. Meas. 2015, 64, 1533.
- 15T. Ciuk, O. Petruk, A. Kowalik, I. Jozwik, A. Rychter, J. Szmidt, W. Strupinski, Appl. Phys. Lett. 2016, 108, 223504.
- 16M. W. K. Nomani, V. Shields, G. Tompa, N. Sbrockey, M. G. Spencer, R. A. Webb, G. Koley, Appl. Phys. Lett. 2012, 100, 092113.
- 17Y. Yang, L.-I. Huang, Y. Fukuyama, F.-H Liu, M. A. Real, P. Barbara, C.-T. Liang, D. B. Newell, R. E. Elmquist, Small 2015, 11, 90.
- 18T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, A. I. Lichtenstein, Nano Lett. 2008, 8, 173.
- 19Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, Z. X. Shen, J. Raman Spectrosc. 2009, 41, 479.
- 20S. Lara-Avila, K. Moth-Poulsen, R. Yakimova, T. Bjørnholm, V. Fal'ko, A. Tzalenchuk, S. Kubatkin, Adv. Mater. 2011, 23, 878.
- 21J. A. Robinson, M. LaBella, K. A. Trumbull, X. J. Weng, R. Cavelero, T. Daniels, Z. Hughes, M. Hollander, M. Fanton, D. Snyder, ACS Nano 2010, 4, 2667.
- 22N. Y. Garces, V. D. Wheeler, J. K. Hite, G. G. Jernigan, J. L. Tedesco, N. Nepal, C. R. Eddy Jr., D. K. Gaskill, J. Appl. Phys. 2011, 109, 124303.
- 23M. J. Hollander, M. LaBella, Z. R. Hughes, M. Zhu, K. A. Trumbull, R. Cavalero, D. W. Snyder, X. Wang, E. Hwang, S. Datta, J. A. Robinson, Nano Lett. 2011, 11, 3601.
- 24J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, M. C. Hersam, ACS Nano 2011, 5, 5223.
- 25N. R. Glavin, C. Muratore, M. L. Jespersen, J. Hu, P. T. Hagerty, A. M. Hilton, A. T. Blake, C. A. Grabowski, M. F. Durstock, M. E. McConney, D. M. Hilgefort, T. S. Fisher, A. A. Voevodin, Adv. Funct. Mater. 2016, 26, 2640.
- 26M. S. Bresnehan, M. J. Hollander, M. Wetherington, M. Labella, K. A. Trumbull, R. Cavalero, D. W. Snyder, J. A. Robinson, ACS Nano 2012, 6, 5234.
- 27N. R. Glavin, M. L. Jespersen, M. H. Check, J. Hu, A. M. Hilton, T. S. Fisher, A. A. Voevodin, Thin Solid Films 2014, 572, 245.
- 28N. D. Orloff, J. Obrzut, C. J. Long, T. Lam, P. Kabos, D. R. Novotny, J. C. Booth, J. Alexander Liddle, IEEE Trans. Microwave Theory Tech. 2014, 62, 2149.
- 29J. Obrzut, C. Emiroglu, O. Kirillov, Y. Yang, R. E. Elmquist, Measurement 2016, 87, 146.
- 30L. Hao, J. Gallop, S. Goniszewski, O. Shaforost, N. Klein, R. Yakimova, Appl. Phys. Lett. 2013, 103, 123103.
- 31Commercial equipment, instruments, and materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology or the United States government, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
- 32N. R. Glavin, C. Muratore, M. L. Jespersen, J. Hu, T. S. Fisher, A. A. Voevodin, J. Appl. Phys. 2015, 117, 165305.
- 33C. J. F. Botcher, P. Bordewijk, Theory of Electric Polarization, Elsevier Science, Amsterdam, The Netherlands 1996.
- 34L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, Hoboken, NJ, USA 2004.
10.1002/0470020466 Google Scholar
- 35K. Rubrice, X. Castel, M. Himdi, P. Parneix, Materials 2016, 9, 825.
- 36J. Iglesias, W. B. Westphal, Supplementary Dielectric Constants and Loss Measurements on High Temperature Materials, MIT, Cambridge, MA, USA 1967.