High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution
Ang-Yu Lu
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorXiulin Yang
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorChien-Chih Tseng
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorShixiong Min
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorShi-Hsin Lin
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
Search for more papers by this authorChang-Lung Hsu
Research Center for Applied Sciences, Academia Sinica, Taipei, 10617 Taiwan
Search for more papers by this authorHenan Li
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorHicham Idriss
SABIC, Corporate Research and Development (CRD) (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorJer-Lai Kuo
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
Search for more papers by this authorKuo-Wei Huang
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorCorresponding Author
Lain-Jong Li
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
E-mail: [email protected]Search for more papers by this authorAng-Yu Lu
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorXiulin Yang
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorChien-Chih Tseng
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorShixiong Min
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorShi-Hsin Lin
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
Search for more papers by this authorChang-Lung Hsu
Research Center for Applied Sciences, Academia Sinica, Taipei, 10617 Taiwan
Search for more papers by this authorHenan Li
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorHicham Idriss
SABIC, Corporate Research and Development (CRD) (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorJer-Lai Kuo
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
Search for more papers by this authorKuo-Wei Huang
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorCorresponding Author
Lain-Jong Li
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
E-mail: [email protected]Search for more papers by this authorGraphical Abstract
The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201602107-sup-0001-S1.pdf33.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307.
- 2A. Ursua, L. M. Gandia, P. Sanchis, Proc. IEEE 2012, 100, 410.
- 3M. Wang, Z. Wang, X. Gong, Z. Guo, Renewable Sustainable Energy Rev. 2014, 29, 573.
- 4M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 2013, 38, 4901.
- 5S. A. Grigoriev, V. I. Porembsky, V. N. Fateev, Int. J. Hydrogen Energy 2006, 31, 171.
- 6F. Barbir, Sol. Energy 2005, 78, 661.
- 7W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, Energy Environ. Sci. 2013, 6, 943.
- 8H. Vrubel, X. Hu, Angew. Chem. 2012, 124, 12875.
10.1002/ange.201207111 Google Scholar
- 9Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Energy Environ. Sci. 2014, 7, 797.
- 10W.-F. Chen, J. T. Muckerman, E. Fujita, Chem. Commun. 2013, 49, 8896.
- 11W.-F. Chen, J. M. Schneider, K. Sasaki, C.-H. Wang, J. Schneider, S. Iyer, S. Iyer, Y. Zhu, J. T. Muckerman, E. Fujita, ChemSusChem 2014, 7, 2414.
- 12X. Yang, A.-Y. Lu, Y. Zhu, S. Min, M. N. Hedhili, Y. Han, K.-W. Huang, L.-J. Li, Nanoscale 2015, 7, 10974.
- 13E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.
- 14X. Yang, A.-Y. Lu, Y. Zhu, M. N. Hedhili, S. Min, K.-W. Huang, Y. Han, L.-J. Li, Nano Energy 2015, 15, 634.
- 15M. Liu, J. Li, ACS Appl. Mater. Interfaces 2016, 8, 2158.
- 16D. Kong, H. Wang, Z. Lu, Y. Cui, J. Am. Chem. Soc. 2014, 136, 4897.
- 17A. J. Smith, Y.-H. Chang, K. Raidongia, T.-Y. Chen, L.-J. Li, J. Huang, Adv. Energy Mater. 2014, 4, 1400398.
- 18A. B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff, Energy Environ. Sci. 2012, 5, 5577.
- 19C.-B. Ma, X. Qi, B. Chen, S. Bao, Z. Yin, X.-J. Wu, Z. Luo, J. Wei, H.-L. Zhang, H. Zhang, Nanoscale 2014, 6, 5624.
- 20H. Wang, H. Feng, J. Li, Small 2014, 10, 2165.
- 21G. Zhang, H. Liu, J. Qu, J. Li, Energy Environ. Sci. 2016, 9, 1190.
- 22T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
- 23H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, Science 2012, 335, 698.
- 24B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
- 25D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850.
- 26H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, X. Zheng, Nat. Mater. 2016, 15, 48.
- 27Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, Z. Ni, ACS Nano 2013, 7, 4202.
- 28Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, K. H. Wei, L. J. Li, Adv. Mater. 2013, 25, 756.
- 29H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 2012, 5, 6136.
- 30Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
- 31D. Merki, X. Hu, Energy Environ. Sci. 2011, 4, 3878.
- 32P. Stonehart, G. Kohlmayr, Electrochim. Acta 1972, 17, 369.
- 33NIST X-ray Photoelectron Spectroscopy Database, http://srdata.nist.gov/xps/ (accessed: January, 2016).
- 34H. Vrubel, X. Hu, ACS Catal. 2013, 3, 2002.
- 35Y.-H. Chang, F.-Y. Wu, T.-Y. Chen, C.-L. Hsu, C.-H. Chen, F. Wiryo, K.-H. Wei, C.-Y. Chiang, L.-J. Li, Small 2014, 10, 895.
- 36S.-H. Lin, J.-L. Kuo, Phys. Chem. Chem. Phys. 2015, 17, 29305.
- 37H. Wang, Z. Lu, D. Kong, J. Sun, T. M. Hymel, Y. Cui, ACS Nano 2014, 8, 4940.
- 38C. L. Green, A. Kucernak, J. Phys. Chem. B 2002, 106, 1036.
- 39N. Nagai, M. Takeuchi, T. Kimura, T. Oka, Int. J. Hydrogen Energy 2003, 28, 35.
- 40F. Marangio, M. Santarelli, M. Calì, Int. J. Hydrogen Energy 2009, 34, 1143.
- 41N. V. Dale, M. D. Mann, H. Salehfar, J. Power Sources 2008, 185, 1348.
- 42M. Ni, M. K. H. Leung, D. Y. C. Leung, Energy Convers. Manage. 2008, 49, 2748.
- 43P. Choi, D. G. Bessarabov, R. Datta, Solid State Ionics 2004, 175, 535.
- 44A. Bard, L. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, NJ, US 2001.
- 45H. Matsushima, Y. Fukunaka, K. Kuribayashi, Electrochim. Acta 2006, 51, 4190.
- 46D. Kiuchi, H. Matsushima, Y. Fukunaka, K. Kuribayashi, J. Electrochem. Soc. 2006, 153, E138.
- 47M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nat. Commun. 2015, 6.
- 48D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.
- 49G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 50S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- 51J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.