Modular Graphene-Based 3D Covalent Networks: Functional Architectures for Energy Applications
Xiaoyan Zhang
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorArtur Ciesielski
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorFanny Richard
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorPengkun Chen
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorEko Adi Prasetyanto
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorLuisa De Cola
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorCorresponding Author
Paolo Samorì
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
E-mail: [email protected]Search for more papers by this authorXiaoyan Zhang
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorArtur Ciesielski
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorFanny Richard
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorPengkun Chen
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorEko Adi Prasetyanto
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorLuisa De Cola
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
Search for more papers by this authorCorresponding Author
Paolo Samorì
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
E-mail: [email protected]Search for more papers by this authorAbstract
The development of ordered graphene-based materials combining high stability, large surface areas, ability to act as absorbent of relevant chemical species, and solution processability is of significance for energy applications. A poorly explored approach relies on the controlled nanostructuration of graphene into robust and highly ordered 3D networks as a route to further leverage the exceptional properties of this unique material. Here, a simple yet effective and scalable one-step method is reported to prepare graphene-based 3D covalent networks (G3DCNs) with tunable interlayer distance via controlled polymerization of benzidines with graphene oxide at different reaction temperatures under catalyst- and template-free conditions. The reduced form of G3DCNs is used as electrodes in supercapacitors; it reveals a high specific capacitance of 156 F g−1 at a current density of 1 A g−1 in a two-electrode configuration and 460 F g−1 at a current density of 0.5 A g−1 in a three-electrode configuration, combined with an excellent cycling stability over 5000 cycles. The present study will promote the quantitative understanding of structure–property relationship, for the controlled fabrication of 3D graphene-based multifunctional materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201503677-sup-0001-S1.pdf337.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 2F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347, 1246501.
- 3C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752.
- 4a) C. Z. Yuan, L. Yang, L. R. Hou, J. Y. Li, Y. X. Sun, X. G. Zhang, L. F. Shen, X. J. Lu, S. L. Xiong, X. W. Lou, Adv. Funct. Mater. 2012, 22, 2560; b) X. Zang, Q. Chen, P. Li, Y. He, X. Li, M. Zhu, X. Li, K. Wang, M. Zhong, D. Wu, H. Zhu, Small 2014, 10, 2583; c) L. Wei, M. Sevilla, A. B. Fuertes, R. Mokaya, G. Yushin, Adv. Funct. Mater. 2012, 22, 827.
- 5P. Simon, Y. Gogotsi, Acc. Chem. Res. 2013, 46, 1094.
- 6a) G. Eda, M. Chhowalla, Adv. Mater. 2010, 22, 2392; b) Y. Huang, J. Liang, Y. Chen, Small 2012, 8, 1805; c) W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, Y. Chen, Adv. Funct. Mater. 2015, 25, 1063.
- 7A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.-H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, J. Kinaret, Nanoscale 2015, 7, 4598.
- 8a) M. H. Yu, Y. C. Huang, C. Li, Y. X. Zeng, W. Wang, Y. Li, P. P. Fang, X. H. Lu, Y. X. Tong, Adv. Funct. Mater. 2015, 25, 324; b) W. B. Wan, L. L. Li, Z. B. Zhao, H. Hu, X. J. Hao, D. A. Winkler, L. C. Xi, T. C. Hughes, J. S. Qiu, Adv. Funct. Mater. 2014, 24, 4915; c) X. Ou, L. Jiang, P. Chen, M. Zhu, W. Hu, M. Liu, J. Zhu, H. Ju, Adv. Funct. Mater. 2013, 23, 2422.
- 9a) H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2008, 2, 463; b) K. Spyrou, M. Calvaresi, E. K. Diamanti, T. Tsoufis, D. Gournis, P. Rudolf, F. Zerbetto, Adv. Funct. Mater. 2015, 25, 263; c) X.-M. Feng, R.-M. , Li, Y.-W. Ma, R.-F. Chen, N.-E. Shi, Q.-L. Fan, W. Huang, Adv. Funct. Mater. 2011, 21, 2989.
- 10A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, Carbon 2001, 39, 507.
- 11M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498.
- 12Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.
- 13X. Cao, Z. Yin, H. Zhang, Energy Environ. Sci. 2014, 7, 1850.
- 14Z. Yan, L. Ma, Y. Zhu, I. Lahiri, M. G. Hahm, Z. Liu, S. Yang, C. Xiang, W. Lu, Z. Peng, Z. Sun, C. Kittrell, J. Lou, W. Choi, P. M. Ajayan, J. M. Tour, ACS Nano 2013, 7, 58.
- 15Z.-D. Huang, B. Zhang, R. Liang, Q.-B. Zheng, S. W. Oh, X.-Y. Lin, N. Yousefi, J.-K. Kim, Carbon 2012, 50, 4239.
- 16L. Dai, D. W. Chang, J.-B. Baek, W. Lu, Small 2012, 8, 1130.
- 17P. M. Sudeep, T. N. Narayanan, A. Ganesan, M. M. Shaijumon, H. Yang, S. Ozden, P. K. Patra, M. Pasquali, R. Vajtai, S. Ganguli, A. K. Roy, M. R. Anantharaman, P. M. Ajayan, ACS Nano 2013, 7, 7034.
- 18J. W. Burress, S. Gadipelli, J. Ford, J. M. Simmons, W. Zhou, T. Yildirim, Angew. Chem. Int. Ed. 2010, 49, 8902.
- 19A. Nicola, B. G. Sumpter, V. Meunier, Phys. Chem. Chem. Phys. 2014, 16, 8646.
- 20T. Tsoufis, G. Tuci, S. Caporali, D. Gournis, G. Giambastiani, Carbon 2013, 59, 100.
- 21F. Guo, W. Xing, J. Zhou, L. Zhao, J. Zeng, Z. Liu, Q. Xue, Z. Yan, Electrochim. Acta 2014, 148, 220.
- 22W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Chem. Mater. 2014, 26, 2983.
- 23S. J. Chae, F. Guenes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, Y. H. Lee, Adv. Mater. 2009, 21, 2328.
- 24K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706.
- 25X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
- 26C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. De Heer, J. Phys. Chem. B 2004, 108, 19912.
- 27J. N. Coleman, Acc. Chem. Res. 2013, 46, 14.
- 28A. A. Green, M. C. Hersam, J. Phys. Chem. Lett. 2010, 1, 544.
- 29X. Y. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. van Wees, B. L. Feringa, Chem. Commun. 2010, 46, 7539.
- 30A. Ciesielski, P. Samorì, Chem. Soc. Rev. 2014, 43, 381.
- 31M. Quintana, E. Vazquez, M. Prato, Acc. Chem. Res. 2013, 46, 138.
- 32J. Malig, N. Jux, D. M. Guldi, Acc. Chem. Res. 2013, 46, 53.
- 33M. Matsumoto, Y. Saito, C. Park, T. Fukushima, T. Aida, Nat. Chem. 2015, 7, 730.
- 34S. Pei, H.-M. Cheng, Carbon 2012, 50, 3210.
- 35a) S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang, R. B. Kaner, ACS Nano 2010, 4, 3845; b) L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Adv. Funct. Mater. 2009, 19, 2782.
- 36a) J. M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G. P. Veronese, P. Samorì, V. Palermo, J. Am. Chem. Soc. 2010, 132, 14130; b) M. Yu, Y. Huang, C. Li, Y. Zeng, W. Wang, Y. Li, P. Fang, X. Lu, Y. Tong, Adv. Funct. Mater. 2015, 25, 324.
- 37H. R. Thomas, A. J. Marsden, M. Walker, N. R. Wilson, J. P. Rourke, Angew. Chem. Int. Ed. 2014, 53, 7613.
- 38C. Su, K. P. Loh, Acc. Chem. Res. 2013, 46, 2275.
- 39D. R. Dreyer, H. P. Jia, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 49, 6813.
- 40P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, J. C. Grossman, Nat. Chem. 2014, 6, 151.
- 41X.-G. Li, M.-R. Huang, W. Duan, Chem. Rev. 2002, 102, 2025.
- 42Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 2008, 130, 5856.
- 43D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.
- 44S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 2010, 4, 2822.
- 45X. Y. Zhang, Y. Huang, Y. Wang, Y. Ma, Z. Liu, Y. Chen, Carbon 2009, 47, 334.
- 46a) L. Clima, D. Peptanariu, M. Pinteala, A. Salicb, M. Barboiu, Chem. Commun. 2015, 51, 17529; b) H. J. Kim, I.-S. Bae, S.-J. Cho, J.-H. Boo, B.-C. Lee, J. Heo, I. Chung, B. Hong, Nanoscale Res. Lett. 2012, 7, 30.
- 47There might be some contribution of NH from protonated NH for the peak at 401 eV, we could not 100% rule out this possibility.
- 48G. M. Do Nascimento, P. S. M. Barbosa, V. R. L. Constantino, M. L. A. Temperini, Colloids Surf. A: Physicochem. Eng. Aspects 2006, 289, 39.
- 49G. N. R. Tripathi, R. H. Schuler, Int. J. Radiat. Appl. lnstrum. Part C Radiat. Phys. Chem. 1988, 32, 251.
- 50S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
- 51Z. J. Fan, J. Yan, L. J. Zhi, Q. Zhang, T. Wei, J. Feng, M. L. Zhang, W. Z. Qian, F. Wei, Adv. Mater. 2010, 22, 3723.
- 52Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963.
- 53Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
- 54Z. Niu, J. Chen, H. H. Hng, J. Ma, X. D. Chen, Adv. Mater. 2012, 24, 4144.
- 55S. Liu, X. Liu, Z. Li, S. Yang, J. Wang, New J. Chem. 2011, 35, 369.
- 56S. P. Zhou, H. M. Zhang, Q. Zhao, X. H. Wang, J. Li, F. S. Wang, Carbon 2013, 52, 440.
- 57P. Si, S. Ding, X.-W. Lou, D.-H. Kim, RSC Adv. 2011, 1, 1271.
- 58V. Khomenko, E. Frackowiak, F. Béguin, Electrochim. Acta 2005, 50, 2499.
- 59J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 2014, 4, 1300816.
- 60Due to the presence of the spacers, the conductivity value is lowered, leading to the IR drop in the charge/discharge curves.
- 61The reduction of the surface area of the RG3DCNs is most likely due to aggregation occurring as a result of the lowered dispersibility of the G3DCNs once reduced with hydrazine, followed by a drying up process that increases even further the aggregation.
- 62X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater. 2014, 26, 3081.
- 63H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472.
- 64a) L. Hao, X. Li, L. Zhi, Adv. Mater. 2013, 25, 3899; b) L.-F. Chen, Z.-H. Huang, H.-W. Liang, H.-L. Gao, S.-H. Yu, Adv. Funct. Mater. 2014, 24, 5104.
- 65P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 2010, 3, 1238.
- 66B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond, H. Park, ACS Nano 2011, 5, 7205.
- 67Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 19532.
- 68a) S. W. Lee, N. Yabuuchi, B. M. Gallant, S. Chen, B. S. Kim, P. T. Hammond, Y. Shao-Horn, Nat. Nanotechnol. 2010, 5, 531; b) J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H. J. Fan, Adv. Mater. 2011, 23, 2076; c) M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 2014, 24, 2489.
- 69S. Park, Y. Hu, J. O. Hwang, E. Lee, L. B. Casabianca, W. Cai, J. R. Potts, H. Ha, S. Chen, J. Oh, S. O. Kim, Y. Kim, Y. Ishii, R. S. Ruoff, Nat. Commun. 2012, 3, 638.
- 70M. D. Stoller, R. S. Ruoff, Energy Environ. Sci. 2010, 3, 1294.
- 71Y. Gogotsi, P. Simon, Science 2011, 334, 917.