Supramolecular Assembly of Macroscopic Building Blocks Through Self-Propelled Locomotion by Dissipating Chemical Energy
Mengjiao Cheng
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorGuannan Ju
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorYingwei Zhang
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorMengmeng Song
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorYajun Zhang
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Feng Shi
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
E-mail: [email protected]Search for more papers by this authorMengjiao Cheng
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorGuannan Ju
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorYingwei Zhang
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorMengmeng Song
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorYajun Zhang
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Feng Shi
State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang Distrist, Beijing, 100029 China
E-mail: [email protected]Search for more papers by this authorGraphical Abstract
Chemical energy supplied by the catalytic decomposition of H2O2 is introduced into macroscopic building blocks, which self-propel, interact with each other, and finally assemble into ordered and advanced structures. The geometry is highly dependent on the way that the catalyst is loaded. The integration of catalyst and building block provides assembling component as well as its energy of motion.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201400922-sup-0001-S1.pdf173.4 KB | Supplementary |
smll201400922-sup-0002-S2.wmv2.2 MB | Supplementary |
smll201400922-sup-0003-S3.wmv3.4 MB | Supplementary |
smll201400922-sup-0004-S4.wmv4.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nat. Mater. 2003, 2, 413.
- 2P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Science 2007, 318, 80.
- 3S.-y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, J. Bur, Nature 1998, 394, 251.
- 4G. von Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chem. Soc. Rev. 2013, 42, 2528.
- 5P. X. Ma, Mater. Today 2004, 7, 30.
- 6D. W. Hutmacher, J. Biomater. Sci., Polym. Ed. 2001, 12, 107.
- 7R. G. Wylie, S. Ahsan, Y. Aizawa, K. L. Maxwell, C. M. Morshead, M. S. Shoichet, Nat. Mater. 2011, 10, 799.
- 8C. A. DeForest, B. D. Polizzotti, K. S. Anseth, Nat. Mater. 2009, 8, 659.
- 9D. H. Gracias, Science 2000, 289, 1170.
- 10Z. Zhang, P. Pfleiderer, A. B. Schofield, C. Clasen, J. Vermant, J. Am. Chem. Soc. 2010, 133, 392.
- 11J. Y. Wang, Y. Wang, S. S. Sheiko, D. E. Betts, J. M. DeSimone, J. Am. Chem. Soc. 2012, 134, 5801.
- 12B. Schulte, M. Tsotsalas, M. Becker, A. Studer, L. De Cola, Angew. Chem. 2010, 122, 7033; Angew. Chem. Int. Ed. 2010, 49, 6881.
- 13A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34.
- 14S. Chandrasekhar, Rev. Mod. Phys. 1943, 15, 1.
10.1103/RevModPhys.15.1 Google Scholar
- 15J. Tien, T. L. Breen, G. M. Whitesides, J. Am. Chem. Soc. 1998, 120, 12670.
- 16H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603.
- 17F. Xu, C. M. Wu, V. Rengarajan, T. D. Finley, H. O. Keles, Y. Sung, B. Q. Li, U. A. Gurkan, U. Demirci, Adv. Mater. 2011, 23, 4254.
- 18Y. L. Han, Y. S. Yang, S. B. Liu, J. H. Wu, Y. M. Chen, T. J. Lu, F. Xu, Biofabrication 2013, 5, 035004.
- 19F. Xu, T. D. Finley, M. Turkaydin, Y. Sung, U. A. Gurkan, A. S. Yavuz, R. O. Guldiken, U. Demirci, Biomaterials 2011, 32, 7847.
- 20H. Qi, M. Ghodousi, Y. Du, C. Grun, H. Bae, P. Yin, A. Khademhosseini, Nat. Commun. 2013, 4, 2275.
- 21Y. N. Du, E. Lo, S. Ali, A. Khademhosseini, Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 9522.
- 22J. C. Love, A. R. Urbach, M. G. Prentiss, G. M. Whitesides, J. Am. Chem. Soc. 2003, 125, 12696.
- 23S. Tasoglu, D. Kavaz, U. A. Gurkan, S. Guven, P. Chen, R. Zheng, U. Demirci, Adv. Mater. 2013, 25, 1137.
- 24G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418.
- 25J. A. Shapiro, Annu. Rev. Microbiol. 1998, 52, 81.
- 26N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, M. Sano, Phys. Rev. Lett. 1996, 76, 3870.
- 27Y. Itino, T. Ohta, J. Phys. Soc. Jpn. 2012, 81, 104007.
- 28R. F. Ismagilov, A. Schwartz, N. Bowden, G. M. Whitesides, Angew. Chem. 2002, 114, 674;
10.1002/1521-3757(20020215)114:4<674::AID-ANGE674>3.0.CO;2-Z Google ScholarAngew. Chem. Int. Ed. 2002, 41, 652.
- 29A. A. Solovev, E. J. Smith, C. C. Bof’ Bufon, S. Sanchez, O. G. Schmidt, Angew. Chem. 2011, 123, 11067;
10.1002/ange.201102096 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 10875.
- 30W. Wang, W. Duan, A. Sen, T. E. Mallouk, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17744.
- 31M. Guix, J. Orozco, M. García, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, ACS Nano 2012, 6, 4445.
- 32S. Ebbens, R. A. L. Jones, A. J. Ryan, R. Golestanian, J. R. Howse, Physical Review E 2010, 82, 015304.
- 33G. A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 2005, 17, 3011.
- 34A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, O. G. Schmidt, ACS Nano 2012, 6, 1751.
- 35N. B. Bowden, M. Weck, I. S. Choi, G. M. Whitesides, Acc. Chem. Res. 2001, 34, 231.
- 36a) M. Xiao, M. J. Cheng, Y. J. Zhang, F. Shi, Small 2013, 9, 2509; b) M. Xiao, X. P. Guo, M. J. Cheng, G. N. Ju, Y. J. Zhang, F. Shi, Small 2014, 10, 859.
- 37Y. Gao, M. Cheng, B. Wang, Z. Feng, F. Shi, Adv. Mater. 2010, 22, 5125.
- 38G. Ju, M. Cheng, M. Xiao, J. Xu, K. Pan, X. Wang, Y. Zhang, F. Shi, Adv. Mater. 2013, 25, 2915.
- 39N. Bowden, Science 1997, 276, 233.
- 40E. P. Lewandowski, J. A. Bernate, A. Tseng, P. C. Searson, K. J. Stebe, Soft Matter 2009, 5, 886.
- 41D. S. Goodsell, Bionanotechnology: Lessons From Nature, Wiley, Hoboken, NJ, USA 2004.
10.1002/0471469572 Google Scholar