Optimization of Quantum Dot-Sensitized Photoelectrode for Realization of Visible Light Hydrogen Generation
Hyo-Jin Ahn
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorMyeong-Jong Kim
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorKwanghyun Kim
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorMyung-Joon Kwak
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorCorresponding Author
Ji-Hyun Jang
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
E-mail: [email protected]Search for more papers by this authorHyo-Jin Ahn
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorMyeong-Jong Kim
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorKwanghyun Kim
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorMyung-Joon Kwak
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
Search for more papers by this authorCorresponding Author
Ji-Hyun Jang
Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, UNIST, 689–798 Korea
E-mail: [email protected]Search for more papers by this authorGraphical Abstract
The quantum-dot sensitization of a commercial TiO2 photoelectrode with maximized light harvesting capacity leads to the realization of hydrogen generation under visible light irradiation. The greatly improved performance of an electrode with light-harvesting capability suggests the proposed route is an effective strategy for electrode materials in photoconversion systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201303830-sup-0001-S1.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) K. Maeda, K. Domen, J. Phys. Chem. C 2007, 111, 7851–7861; b) K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi, K. Domen, Angew. Chem. Int. Ed. 2010, 49, 4096–4099; c) M. Zhang, Y. Lin, T. J. Mullen, W.-f. Lin, L.-D. Sun, C.-H. Yan, T. E. Patten, D. Wang, G.-y. Liu, J. Phys. Chem. Lett. 2012, 3, 3188–3192; d) M. Zhong, Y. Li, I. Yamada, J.-J. Delaunay, Nanoscale 2012, 4, 1509–1514; e) P. Rodenas, T. Song, P. Sudhagar, G. Marzari, H. Han, L. Badia-Bou, S. Gimenez, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, U. Paik, Y. S. Kang, Adv. Energy Mater. 2013, 3, 176–182; f) Y. Lin, S. Zhou, X. Liu, S. Sheehan, D. Wang, J. Am. Chem. Soc. 2009, 131, 2772–2773; g) P. Thiyagarajan, H.-J. Ahn, J.-S. Lee, J.-C. Yoon, J.-H. Jang, Small 2013, 9, 2341–2347.
- 2a) J. Zhang, J. H. Bang, C. Tang, P. V. Kamat, ACS Nano 2009, 4, 387–395; b) G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026–3033; c) S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243–2245; d) A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Small 2009, 5, 104–111.
- 3a) J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Y. Tok, H. J. Fan, Sci. Rep. 2012, 2, 421; b) M. A. Holmes, T. K. Townsend, F. E. Osterloh, Chem. Commun. 2012, 48, 371–373; c) H. M. Chen, C. K. Chen, Y.-C. Chang, C.-W. Tsai, R.-S. Liu, S.-F. Hu, W.-S. Chang, K.-H. Chen, Angew. Chem. Int. Ed. 2010, 49, 5966–5969; d) S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, H. J. Fan, Adv. Mater. 2012, 24, 4157–4162; e) C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, H. J. Fan, Small 2012, 8, 37–42.
- 4a) Y. Li, K. Yoo, D.-K. Lee, J. Y. Kim, H. Kim, B. Kim, M. J. Ko, Nanoscale 2013, 5, 4711–4719; b) J. Hensel, G. Wang, Y. Li, J. Z. Zhang, Nano Lett. 2010, 10, 478–483.
- 5a) K. Kim, P. Thiyagarajan, H.-J. Ahn, S.-I. Kim, J.-H. Jang, Nanoscale 2013, 5, 6254–6260; b) H.-J. Ahn, S.-I. Kim, J.-C. Yoon, J.-S. Lee, J.-H. Jang, Nanoscale 2012, 4, 4464–4469; c) K. Kim, M. J. Kim, S. I. Kim, J. H. Jang, Sci. Rep. 2013, 3, 3330.
- 6a) J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, E. L. Thomas, Adv. Funct. Mater. 2007, 17, 3027–3041; b) J.-H. Jang, S. J. Jhaveri, B. Rasin, C. Koh, C. K. Ober, E. L. Thomas, Nano Lett. 2008, 8, 1456–1460.
- 7S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, C.-C. Yu, Nanoscale 2010, 2, 799–805.
- 8a) F. Andrew Frame, E. C. Carroll, D. S. Larsen, M. Sarahan, N. D. Browning, F. E. Osterloh, Chem. Commun. 2008, 2206–2208; b) L. Liu, G. Wang, Y. Li, Y. Li, J. Zhang, Nano Res. 2011, 4, 249–258; c) G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088–1092.