Magneto-Plasmonic Au-Fe Alloy Nanoparticles Designed for Multimodal SERS-MRI-CT Imaging
Correction(s) for this article
-
Magneto-Plasmonic Au-Fe Alloy Nanoparticles Designed for Multimodal SERS-MRI-CT Imaging
- Vincenzo Amendola,
- Stefano Scaramuzza,
- Lucio Litti,
- Moreno Meneghetti,
- Gaia Zuccolotto,
- Antonio Rosato,
- Elena Nicolato,
- Pasquina Marzola,
- Giulio Fracasso,
- Cristina Anselmi,
- Marcella Pinto,
- Marco Colombatti,
- Volume 10Issue 19Small
- pages: 3823-3823
- First Published online: October 8, 2014
Corresponding Author
Vincenzo Amendola
Department of Chemical Sciences, University of Padova, Padova, Italy
E-mail: [email protected], [email protected]Search for more papers by this authorStefano Scaramuzza
Department of Chemical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorLucio Litti
Department of Chemical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorMoreno Meneghetti
Department of Chemical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorGaia Zuccolotto
Department of Oncology and Surgical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorAntonio Rosato
Department of Oncology and Surgical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorElena Nicolato
Dept. of Neurological and Movement Sciences, University of Verona, Verona, Italy
Search for more papers by this authorPasquina Marzola
Department of Computer Sciences, University of Verona, Verona, Italy
Search for more papers by this authorCorresponding Author
Giulio Fracasso
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
E-mail: [email protected], [email protected]Search for more papers by this authorCristina Anselmi
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
Search for more papers by this authorMarcella Pinto
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
Search for more papers by this authorMarco Colombatti
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
Search for more papers by this authorCorresponding Author
Vincenzo Amendola
Department of Chemical Sciences, University of Padova, Padova, Italy
E-mail: [email protected], [email protected]Search for more papers by this authorStefano Scaramuzza
Department of Chemical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorLucio Litti
Department of Chemical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorMoreno Meneghetti
Department of Chemical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorGaia Zuccolotto
Department of Oncology and Surgical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorAntonio Rosato
Department of Oncology and Surgical Sciences, University of Padova, Padova, Italy
Search for more papers by this authorElena Nicolato
Dept. of Neurological and Movement Sciences, University of Verona, Verona, Italy
Search for more papers by this authorPasquina Marzola
Department of Computer Sciences, University of Verona, Verona, Italy
Search for more papers by this authorCorresponding Author
Giulio Fracasso
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
E-mail: [email protected], [email protected]Search for more papers by this authorCristina Anselmi
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
Search for more papers by this authorMarcella Pinto
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
Search for more papers by this authorMarco Colombatti
Department of Pathology and Diagnostics, University of Verona, Verona, Italy
Search for more papers by this authorAbstract
Diagnostic approaches based on multimodal imaging are needed for accurate selection of the therapeutic regimens in several diseases, although the dose of administered contrast drugs must be reduced to minimize side effects. Therefore, large efforts are deployed in the development of multimodal contrast agents (MCAs) that permit the complementary visualization of the same diseased area with different sensitivity and different spatial resolution by applying multiple diagnostic techniques. Ideally, MCAs should also allow imaging of diseased tissues with high spatial resolution during surgical interventions. Here a new system based on multifunctional Au-Fe alloy nanoparticles designed to satisfy the main requirements of an ideal MCA is reported and their biocompatibility and imaging capability are described. The MCAs show easy and versatile surface conjugation with thiolated molecules, magnetic resonance imaging (MRI) and computed X-ray tomography (CT) signals for anatomical and physiological information (i.e., diagnostic and prognostic imaging), large Raman signals amplified by surface enhanced Raman scattering (SERS) for high sensitivity and high resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use and capability of selective accumulation in tumors by enhanced permeability and retention effect. Taken together, these results show that Au-Fe nanoalloys are excellent candidates as multimodal MRI-CT-SERS imaging agents.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201303372-sup-0001-S1.pdf774.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Chen, H. Zhuang, G. Cheng, D. A. Torigian, A. Alavi, Ann. Nucl. Med. 2013, 27(1), 58–64.
- 2M. Werner, C. Claussen, C. Pfannenberg, Cancer Imaging. 2013, 13(1), 63–72.
- 3H. Tanaka, S. Hayashi, K. Ohtakara, H. Hoshi, T. Iida, J. Radiat. Res. 2011, 52(6), 782–788.
- 4A. Fiorentino, R. Caivano, P. Pedicini, V. Fusco, Clin. Trans. Onc. 2013, 1–5.
- 5C. S. Kidwell, M. Wintermark, D. A. De Silva, T. J. Schaewe, R. Jahan, S. Starkman, T. Jovin, J. Hom, M. Jumaa, J. Schreier, Stroke. 2013, 44(1), 73–79.
- 6S. B. Coutts, J. Modi, S. K. Patel, A. M. Demchuk, M. Goyal, M. D. Hill, Stroke. 2012, 43(4), 1013–1017.
- 7R. Beynon, J. A. Sterne, G. Wilcock, M. Likeman, R. M. Harbord, M. Astin, M. Burke, A. Bessell, Y. Ben-Shlomo, J. Hawkins, BMC neurology. 2012, 12(1), 33.
- 8G. Wang, J. Zhang, H. Gao, V. Weir, H. Yu, W. Cong, X. Xu, H. Shen, J. Bennett, M. Furth, Y. Wang, M. Vannier, PLoS ONE. 2012, 7(6), e39700.
- 9R. Weissleder, M. J. Pittet, Nature. 2008, 452(7187), 580–589.
- 10Z. Ali, A. Abbasi, F. Zhang, P. Arosio, A. Lascialfari, M. Casula, A. Wenk, W. Kreyling, R. Plapper, M. Seidel, Anal. Chem. 2011, 83(8), 2877–2882.
- 11J. V. Jokerst, A. J. Cole, D. Van de Sompel, S. S. Gambhir, ACS nano. 2012, 6(11), 10366–10377.
- 12M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, Nat. Med. 2012, 18(5), 829–834.
- 13Q. T. Nguyen, R. Y. Tsien, Nat. Rev. Cancer. 2013, 13(9), 653–662.
- 14L. E. Kelderhouse, V. Chelvam, C. Wayua, S. Mahalingam, S. Poh, S. A. Kularatne, P. S. Low, Bioconjug. Chem. 2013, 24(6), 1075–1080.
- 15N. Gandra, S. Singamaneni, Nanomedicine. 2013, 8(3), 317–320.
- 16A. Thakor, J. Jokerst, C. Zavaleta, T. Massoud, S. Gambhir, Nano letters. 2011, 11(10), 4029–4036.
10.1021/nl202559p Google Scholar
- 17R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 2010, 22(25), 2729–2742.
- 18Y. Zhang, Q. Wang, Adv. Mater. 2012, 24, 2485–2490.
- 19C. M. Niemeyer, Angew. Chem. Int. Ed. 2001, 40(22), 4128–4158.
10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 20S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, Angew. Chem. Int. Ed. 2011, 50(14), 3158–3163.
- 21F. Lisi, P. Falcaro, D. Buso, A. J. Hill, J. A. Barr, G. Crameri, T. Nguyen, L. Wang, P. Mulvaney, Adv. Healt. Mater. 2012, 1(5), 631–634.
- 22M. J. Sailor, J. Park, Adv. Mater. 2012, 24(28), 3779–3802.
- 23Y. Jin, C. Jia, S. Huang, M. O'Donnell, X. Gao, Nat. Commun. 2010, 1, 41.
- 24W. Dong, Y. Li, D. Niu, Z. Ma, X. Liu, J. Gu, W. Zhao, Y. Zheng, J. Shi, Small. 2013, 9(15), 2500–2508.
- 25Z. Cheng, A. Al Zaki, J. Z. Hui, V. R. Muzykantov, A. Tsourkas, Science. 2012, 338(6109), 903–910.
- 26T. Passuello, M. Pedroni, F. Piccinelli, S. Polizzi, P. Marzola, S. Tambalo, G. Conti, D. Benati, F. Vetrone, M. Bettinelli, A. Speghini, Nanoscale. 2012, 4(24), 7682–7689.
- 27H. B. Na, I. C. Song, T. Hyeon, Adv. Mater. 2009, 21(21), 2133–2148.
- 28V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 2013, 15(9), 3027–3046.
- 29Y. Jun, J. Lee, J. Cheon, Angew. Chem. Int. Ed. 2008, 47(28), 5122–5135.
- 30L. Bogani, L. Cavigli, C. de Julián Fernández, P. Mazzoldi, G. Mattei, M. Gurioli, M. Dressel, D. Gatteschi, Adv. Mater. 2010, 22(36), 4054–4058.
- 31P. Allia, M. Coisson, G. Durin, J. Moya, V. Selvaggini, P. Tiberto, F. Vinai, J. Appl. Phys. 2002, 91(9), 5936–5939.
- 32O. Lutes, J. Schmit, Phys. Rev. 1964, 134(3A), A676.
- 33F. Wilhelm, P. Poulopoulos, V. Kapaklis, J. Kappler, N. Jaouen, A. Rogalev, A. Yaresko, C. Politis, Phys. Rev. B. 2008, 77(22), 224414.
- 34I. Chiang, D. Chen, Adv. Funct. Mater. 2007, 17(8), 1311–1316.
- 35X. Duan, J. Wang, L. Yu, S. Leng, C. H. McCollough, Med. Phys. 2011, 38(2), 993.
- 36M. Hossain, M. Su, J. Phys. Chem. C. 2012, 116(43), 23047–23052.
- 37D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, S. Jon, J. Am. Chem. Soc. 2007, 129(24), 7661–7665.
- 38Argonne National Laboratory, http://11bm.xray.aps.anl.gov/absorb/absorb.php.
- 39N. Gandra, S. Singamaneni, Adv. Mater. 2013, 25, 1022–1027.
- 40V. Amendola, M. Meneghetti, Adv. Funct. Mater. 2012, 22(2), 353–360.
- 41V. Amendola, M. Meneghetti, O. M. Bakr, P. Riello, S. Polizzi, S. Fiameni, H. Dalaver, P. Arosio, T. Orlando, C. de Julian Fernandez, F. Pineider, C. Sangregorio, A. Lascialfari, Nanoscale. 2013, 5, 5611–5619.
- 42Mafunè Fumitaka, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B. 2001, 105(22), 5114–5120.
- 43F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B. 2000, 104(39), 9111–9117.
- 44H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Ohio 2000.
- 45N. Guarrotxena, B. Liu, L. Fabris, G. C. Bazan, Adv. Mater. 2010, 22(44), 4954–4958.
- 46M. Meneghetti, A. Scarsi, L. Litti, G. Marcolongo, V. Amendola, M. Gobbo, M. Di Chio, A. Boscaini, G. Fracasso, M. Colombatti, Small. 2012, 8(24), 3733–3738.
- 47V. Amendola, M. Meneghetti, S. Fiameni, S. Polizzi, G. Fracasso, A. Boscaini, M. Colombatti, Anal.Methods. 2011, 3(4), 849–856.
- 48K. Cho, X. Wang, S. Nie, D. M. Shin, Clin.Canc.Res. 2008, 14(5), 1310–1316.
- 49K. Greish, J. Drug Target. 2007, 15(7-8), 457–464.
- 50H. Meng, M. Xue, T. Xia, Z. Ji, D. Y. Tarn, J. I. Zink, A. E. Nel, ACS nano. 2011, 5(5), 4131–4144.
- 51R. Weissleder, Nat. Biotechnol. 2001, 19(4), 316–317.
- 52E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, ACS Nano. 2011, 5(2), 905.
- 53E. Messina, E. Cavallaro, A. Cacciola, R. Saija, F. Borghese, P. Denti, B. Fazio, C. D'Andrea, P. G. Gucciardi, M. A. Iati, M. Meneghetti, G. Compagnini, V. Amendola, O. M. Maragò, J. Phys. Chem. C. 2011, 115(12), 5115–5122.
- 54X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Las. Med. Sci. 2008, 23(3), 217–228.
- 55G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, S. N. Bhatia, Adv. Mater. 2009, 21(31), 3175–3180.
- 56H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, A. O. Govorov, Nano letters. 2009, 9(3), 1139.
- 57J. R. Cook, W. Frey, S. Emelianov, ACS nano. 2013, 7, 1272–1280.
- 58S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, S. Emelianov, Nano letters. 2009, 9(8), 2825.
- 59U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin 1995.
10.1007/978-3-662-09109-8 Google Scholar
- 60V. Amendola, M. Meneghetti, J. Phys. Chem. C. 2009, 113(11), 4277–4285.
- 61V. Amendola, O. M. Bakr, F. Stellacci, Plasmonics. 2010, 5(1), 85–97.
- 62C. Krafft, S. Dochow, I. Latka, B. Dietzek, J. Popp, Biomedi. Spectr.Imag. 2012, 1(1), 39–55.
- 63M. A. Short, S. Lam, A. McWilliams, J. Zhao, H. Lui, H. Zeng, Opt. Lett. 2008, 33(7), 711–713.
- 64D. Ling, T. Hyeon, Small. 2013, 9, 1450–1466.
- 65J. T. Jenkins, D. L. Halaney, K. V. Sokolov, L. L. Ma, H. J. Shipley, S. Mahajan, C. L. Louden, R. Asmis, T. E. Milner, K. P. Johnston, Nanomedicine. 2013, 9, 365–365.
- 66F. Appaix, S. Girod, S. Boisseau, J. Römer, J. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, B. Van Der Sanden, PloS one. 2012, 7(4), e35169.
- 67R. A. Hill, S. Reddi, M. E. Kenney, J. Ryan, L. Liaw, J. Garrett, J. Shirk, G. Cheng, T. Krasieva, M. W. Berns, Invest. Ophthalmol. Vis. Sci. 1995, 36(12), 2476–2481.
- 68S. Bown, C. Tralau, P. Smith, D. Akdemir, T. Wieman, Br. J. Cancer. 1986, 54(1), 43.
- 69L. Minafra, G. Di Cara, N. N. Albanese, P. Cancemi, Leuk. Res. 2011, 35(2), 226–236.
- 70J. Blechinger, A. T. Bauer, A. A. Torrano, C. Gorzelanny, C. Brauchle, S. W. Schneider, Small. 2013, 9(23), 3970–3980.
- 71N. A. Franken, H. M. Rodermond, J. Stap, J. Haveman, C. Van Bree, Nat. Protoc. 2006, 1(5), 2315–2319.
- 72O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder, Nat.Mater. 2006, 5(2), 118–122.
- 73N. Lee, S. H. Choi, T. Hyeon, Adv Mater. 2013, 25, 2641–2660.
- 74A. Verma, F. Stellacci, Small. 2010, 6(1), 12–21.
- 75P. J. Flatau, B. Draine, J. Opt. Soc. Am. A. 1994, 11, 1491.
- 76J. Goodman, B. T. Draine, P. J. Flatau, Opt. Lett. 1991, 16(15), 1198–1200.
- 77E. D. Palik, Handbook of Optical Constants of Solids, Academic Press 1985.
10.1016/B978-0-08-054721-3.50037-X Google Scholar
- 78Y. Lee, Y. Kudryavtsev, V. Nemoshkalenko, R. Gontarz, J. Rhee, Phys. Rev. B. 2003, 67(10), 104424.
- 79V. Amendola, M. Meneghetti, Adv. Funct. Mater. 2012, 22(2), 353–360.
- 80V. Amendola, M. Meneghetti, G. Granozzi, S. Agnoli, S. Polizzi, P. Riello, A. Boscaini, C. Anselmi, G. Fracasso, M. Colombatti, J. Mater. Chem. 2011, 21, 3803–3813.