A Novel and Highly Efficient Photocatalyst Based on P25–Graphdiyne Nanocomposite
Shuo Wang
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
Search for more papers by this authorLuoxin Yi
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorJonathan E. Halpert
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorXiaoyong Lai
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorYuanyuan Liu
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorHongbin Cao
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorCorresponding Author
Ranbo Yu
Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China
Ranbo Yu, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China
Dan Wang, State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Search for more papers by this authorCorresponding Author
Dan Wang
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Ranbo Yu, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China
Dan Wang, State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Search for more papers by this authorYuliang Li
Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorShuo Wang
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
Search for more papers by this authorLuoxin Yi
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorJonathan E. Halpert
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorXiaoyong Lai
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorYuanyuan Liu
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorHongbin Cao
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorCorresponding Author
Ranbo Yu
Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China
Ranbo Yu, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China
Dan Wang, State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Search for more papers by this authorCorresponding Author
Dan Wang
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Ranbo Yu, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China
Dan Wang, State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Search for more papers by this authorYuliang Li
Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
Search for more papers by this authorAbstract
Titania nanoparticles (P25) are successfully chemically bonded with graphdiyne (GD) nanosheets by a facile hydrothermal treatment, to form a novel nanocomposite photocatalyst. The as-prepared P25–GD nanocomposite exhibits higher photocatalytic activity for degrading methylene blue under UV irradiation than not only P25 and P25–carbon nanotube composite but also the current well-known P25–graphene composite photocatalysts. Moreover, P25–GD also shows considerable visible-light-driven photocatalytic activity, since the formation of chemical bonds between P25 and GD effectively decreases the bandgap of P25 and extends its absorbable light range. The photocatalytic activity of P25–GD can be adjusted by changing the content of GD in composites and the optimized value is about 0.6 wt%. Such a nanocomposite photocatalyst might find potential application in a wide range of fields including air purification and waste water treatment.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_201101686_sm_suppl.pdf3.5 MB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
a)
R. Asahi,
T. Morikawa,
T. Ohwaki,
K. Aoki,
Y. Taga,
Science
2001,
293,
269;
b)
M. Fujihira,
Y. Satoh,
T. Osa,
Nature
1981,
293,
206;
c)
J. Zhang,
Q. Xu,
Z. Feng,
M. Li,
C. Li,
Angew. Chem. Int. Ed.
2008,
47,
1766;
d)
X. M. Sun,
Y. D. Li,
Chem. Eur. J.
2003,
9,
2229;
e)
T. Kawahara,
Y. Konishi,
H. Tada,
N. Tohge,
J. Nishii,
S. Ito,
Angew. Chem. Int. Ed.
2002,
41,
2811.
10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 2 a) H. Tang, F. Levy, H. Berger, P. Schmid, Phys. Rev. B 1995, 52, 7771; b) F. Arntz, Y. Yacoby, Phys. Rev. Lett. 1966, 17, 857.
- 3 a) X. J. Feng, K. Shankar, M. Paulose, C. A. Grimes, Angew. Chem. Int. Ed. 2009, 48, 8095; b) G. R. Li, F. Wang, Q. W. Jiang, X. P. Gao, P. W. Shen, Angew. Chem. Int. Ed. 2010, 49, 3653; c) J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839.
- 4 a) L. W. Zhang, H. B. Fu, Y. F. Zhu, Adv. Funct. Mater. 2008, 18, 2180; b) W. D. Wang, C. G. Silva, J. L. Faria, Appl. Catal. B 2007, 70, 470.
- 5 a) Y. D. Yang, L. T. Qu, L. M. Dai, T. S. Kang, M. Durstock, Adv. Mater. 2007, 19, 1239; b) K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 2009, 21, 2233.
- 6 a) A. Kongkanand, P. V. Kamat, ACS Nano 2007, 1, 13; b) P. Brown, K. Takechi, P. V. Kamat, J. Phys. Chem. C 2008, 112, 4776.
- 7 a) H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 2010, 4, 380; b) J. Du, X. Y. Lai, N. L. Yang, J. Zhai, D. Kisailus, F. B. Su, D. Wang, L. Jiang, ACS Nano 2011, 5, 590; c) C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen, Q. Cai, Carbon 2011, 49, 5312; d) O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar, J. Phys. Chem. C 2010, 114, 12955.
- 8 a) N. Li, G. Liu, C. Zhen, F. Li, L. L. Zhang, H. M. Cheng, Adv. Funct. Mater. 2011, 21, 1717; b) N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano 2010, 4, 887.
- 9 a) C. G. Silva, J. L. Faria, ChemSusChem 2010, 3, 609; b) W. Wang, C. G. Silva, J. L. Faria, Appl. Catal. B 2007, 70, 470; c) W. C. Oh, A. R. Jung, W. B. Ko, J. Ind. Eng. Chem. 2007, 13, 1208; d) J. Lin, R. Zong, M. Zhou, Y. Zhu, Appl. Catal. B 2009, 89, 425; e) R. G. Xu, J. X. Yao, X. Y. Lai, D. Mao, C. J. Xing, D. Wang, Chem. Res. Chin. Univ. 2009, 25, 95.
- 10 a) R. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 1987, 87, 6687; b) N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 1998, 58, 11009; c) N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 2000, 62, 11146; d) N. Narita, S. Nagai, S. Suzuki, Phys. Rev. B 2001, 64; e) M. Kondo, D. Nozaki, M. Tachibana, T. Yumura, K. Yoshizawa, Chem. Phys. 2005, 312, 289.
- 11
W. B. Wan,
S. C. Brand,
J. J. Pak,
M. M. Haley,
Chem. Eur. J.
2000,
6,
2044.
10.1002/1521-3765(20000602)6:11<2044::AID-CHEM2044>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 12 a) Q. Zhou, P. J. Carroll, T. M. Swager, J. Org. Chem. 1994, 59, 1294; b) M. M. Haley, M. L. Bell, J. Jamieson, C. A. Johnson, T. J. R. Weakley, J. Am. Chem. Soc. 1997, 119, 2956; c) W. B. Wan, M. M. Haley, J. Org. Chem. 2001, 66, 3893; d) J. A. Marsden, M. M. Haley, J. Org. Chem. 2005, 70, 10213.
- 13 G. Li, Y. Li, H. Liu, Y. Guo, D. Zhu, Chem. Commun. 2010, 46, 3256.
- 14 M. Q. Long, L. Tang, D. Wang, Y. L. Li, Z. G. Shuai, ACS Nano 2011, 5, 2593.
- 15 a) G. F. Luo, X. M. Qian, H. B. Liu, R. Qin, J. Zhou, L. Z. Li, Z. X. Gao, E. G. Wang, W. N. Mei, J. Lu, Y. L. Li, S. Nagase, Phys. Rev. B 2011, 84; b) G. X. Li, Y. L. Li, X. M. Qian, H. B. Liu, H. W. Lin, N. Chen, Y. J. Li, J. Phys. Chem. C 2011, 115, 2611; c) H. Du, Z. Deng, Z. Lü, Y. Yin, L. Yu, H. Wu, Z. Chen, Y. Zou, Y. Wang, H. Liu, Y. Li, Synth. Met. 2011, 161, 2055.
- 16 J. Zhang, M. Li, Z. Feng, J. Chen, C. Li, J. Phys. Chem. B 2006, 110, 927.
- 17 S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 2003, 42, 4908.
- 18 Y. H. Zhang, Z. R. Tang, X. Z. Fu, Y. J. Xu, ACS Nano 2010, 4, 7303.
- 19 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2008, 2, 463.