Lyotropic Liquid-Crystalline Solutions of High-Concentration Dispersions of Single-Walled Carbon Nanotubes with Conjugated Polymers†
Hang Woo Lee
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorWei You
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorSoumendra Barman
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorSondra Hellstrom
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorMelburne C. LeMieux
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorJoon Hak Oh
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorShuhong Liu
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorTakenori Fujiwara
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorWechung Maria Wang
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorBin Chen
NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorYong Wan Jin
Samsung Advanced Institute of Technology Giheung-gu, Younggin-si Gyunggi-do 449-712 (South Korea)
Search for more papers by this authorJong Min Kim
Samsung Advanced Institute of Technology Giheung-gu, Younggin-si Gyunggi-do 449-712 (South Korea)
Search for more papers by this authorCorresponding Author
Zhenan Bao
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA).Search for more papers by this authorHang Woo Lee
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorWei You
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorSoumendra Barman
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorSondra Hellstrom
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorMelburne C. LeMieux
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorJoon Hak Oh
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorShuhong Liu
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorTakenori Fujiwara
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorWechung Maria Wang
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Search for more papers by this authorBin Chen
NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorYong Wan Jin
Samsung Advanced Institute of Technology Giheung-gu, Younggin-si Gyunggi-do 449-712 (South Korea)
Search for more papers by this authorJong Min Kim
Samsung Advanced Institute of Technology Giheung-gu, Younggin-si Gyunggi-do 449-712 (South Korea)
Search for more papers by this authorCorresponding Author
Zhenan Bao
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA)
Department of Chemical Engineering, Stanford University 381 North South Mall Stanford, CA 94305 (USA).Search for more papers by this authorThis research was supported by the Samsung Advanced Institute of Technology, the Stanford University School of Engineering, and a Sloan Research Fellowship.
Graphical Abstract
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200800640_sm_suppdata.pdf808 KB | suppdata |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
G. Dresselhaus,
P. Avouris, in
Carbon Nanotubes: Synthesis, Structure, Properties and Applications,
Springer,
Berlin
2001.
10.1007/3-540-39947-X Google Scholar
- 2 R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787– 792.
- 3 R. C. Haddon, J. Sippel, A. G. Rinzler, F. Papadimitrakopoulos, MRS Bull. 2004, 252– 259.
- 4 J. Chen, H. Y. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, G. C. Walker, J. Am. Chem. Soc. 2002, 124, 9034– 9035.
- 5 D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105– 1136.
- 6 K. J. Ziegler, Z. N. Gu, H. Q. Peng, E. L. Flor, R. H. Hauge, R. E. Smalley, J. Am. Chem. Soc. 2005, 127, 1541– 1547.
- 7 J. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, F. Giesselmann, Adv. Mater. 2007, 19, 359– 364.
- 8 M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, Z. Bao, Science 2008, 321, 101– 104.
- 9 J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Chem. Commun. 2001, 193– 194.
- 10 D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105– 1136.
- 11 M. F. Islam, A. M. Alsayed, Z. Dogic, J. Zhang, T. C. Lubensky, A. G. Yodh, Phys. Rev. Lett. 2004, 92, 088303.
- 12 M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, A. G. Yodh, Nano Lett. 2003, 3, 269– 273.
- 13 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338– 342.
- 14 M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. H. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley, Chem. Phys. Lett. 2001, 342, 265– 271.
- 15
A. Star,
J. F. Stoddart,
D. Steuerman,
M. Diehl,
A. Boukai,
E. W. Wong,
X. Yang,
S. W. Chung,
H. Choi,
J. R. Heath,
Angew. Chem. Int. Ed.
2001,
40,
1721–
1725.
10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 16 K. K. Kim, S.-M. Yoon, J.-Y. Choi, J. Lee, B.-K. Kim, J. M. Kim, J.-H. Lee, U. Paik, M. H. Park, C. W. Yang, K. H. An, Y. Chung, Y. H. Lee, Adv. Funct. Mater. 2007, 17, 1775– 1783.
- 17 J. Tsukamoto, J. Mata, Jpn. J. Appl. Phys, Part 2, 2004, 43, L214– L216.
- 18 F. M. Chen, B. Wang, Y. Chen, L. J. Li, Nano Lett. 2007, 7, 3013– 3017.
- 19 A. Nish, J. Y. Hwang, J. Doig, R. J. Nicholas, Nat. Nanotechnol. 2007, 2, 640– 646.
- 20 F. Wang, H. Gu, T. M. Swager, J. Am. Chem. Soc 2008, 130, 5392– 5393.
- 21 R. Shvartzman-Cohen, Y. Levi-Kalisman, E. Nativ-Roth, R. Yerushalmi-Rozen, Langmuir 2004, 20, 6085– 6088.
- 22 J. Zou, L. Liu, H. Chen, S. I. Khondaker, R. D. McCullough, Q. Huo, L. Zhai, Adv. Mater. 2008, 20, 2055– 2060.
- 23 W. Barford, in Electronic and Optical Properties of Conjugated Polymers, Oxford University Press, Oxford 2005.
- 24 J. X. Geng, T. Y. Zeng, J. Am. Chem. Soc. 2006, 128, 16827– 16833.
- 25 C. Kocabas, M. Shim, J. A. Rogers, J. Am. Chem. Soc. 2006, 128, 4540– 4541.
- 26 X. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo, H. J. Dai, J. Am. Chem. Soc. 2007, 129, 4890– 4891.
- 27 H. Ko, V. V. Tsukruk, Nano Lett. 2006, 6, 1443– 1448.
- 28 B. Z. Tang, H. Y. Xu, Macromolecules 1999, 32, 2569– 2576.
- 29 I. O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg, H. J. Wondergem, P. C. M. Christianen, A. P. H. J. Schenning, D. M. de Leeuw, Z. Tomovic, J. Wu, K. Mullen, J. C. Maan, J. Am. Chem. Soc. 2005, 127, 16233– 16237.
- 30 Z. N. Bao, K. R. Amundson, A. J. Lovinger, Macromolecules 1998, 31, 8647– 8649.
- 31 L. Onsager, Ann. N. Y. Acad. Sci. 1949, 51, 627– 659.
- 32 W. H. Song, I. A. Kinloch, A. H. Windle, Science 2003, 302, 1363– 1363.
- 33 V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. H. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, M. Pasquali, Macromolecules 2004, 37, 154– 160.
- 34 S. Badaire, C. Zakri, M. Maugey, A. Derre, J. N. Barisci, G. Wallace, P. Poulin, Adv. Mater. 2005, 17, 1673– 1676.
- 35 C. A. Dyke, M. P. Stewart, J. M. Tour, J. Am. Chem. Soc. 2005, 127, 4497– 4509.
- 36 V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, Y. Yang, Chem. Phys. Lett. 2005, 411, 138– 143.
- 37 A. M. Somoza, C. Sagui, C. Roland, Phys. Rev. B 2001, 63, 081403.
- 38 J. P. F. Lagerwall, G. Scalia, J. Mater. Chem. 2008, 2890– 2898.
- 39 T. Fukushima, T. Aida, Chem. Eur. J. 2007, 13, 5048– 5058.