Signaling through the high affinity IgE receptor and conditions able to modify IgE-antigen responsiveness of mast cells
Jaciel Medina-Tamayo
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorElizabeth Sanchez-Miranda
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorJuan Pablo Benitez-Garrido
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorAlejandro Martin Avila-Hernandez
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorAlejandro Padilla
Immunology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
Search for more papers by this authorJonathan Garcia-Roman
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorJaciel Medina-Tamayo
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorElizabeth Sanchez-Miranda
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorJuan Pablo Benitez-Garrido
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorAlejandro Martin Avila-Hernandez
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorAlejandro Padilla
Immunology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
Search for more papers by this authorJonathan Garcia-Roman
Pharmacobiology Department, Center for Research and Advanced Studies (CINVESTAV), South Campus, National Autonomous University of Mexico, Mexico City, Mexico. Fax: +55 50 612863
Search for more papers by this authorAbstract
Signaling through the high affinity receptor for IgE (FcεRI) on mast cells comprises an intricate network of protein-protein modifications and interactions leading to mast cell degranulation, lipid-derived mediator production and cytokine release. Depending on the tissue where mast cells are activated, mediator release can induce distinct allergy symptoms. FcεRI receptor mainly couples to at least two Src family kinases (Lyn and Fyn), which are responsible for the initiation of the signaling cascade. Distinct membrane bound adapters couple the initial signal to the formation of particular multi-molecular complexes that, in turn, will mediate a specific final response. In this review we summarize the molecular mechanisms initiated by the FcεRI receptor on mast cells that have been involved in cytokine expression. At the same time, some conditions where the main signal transduction mechanism is modified will be analyzed in order to understand how locally produced mediators could alter IgE-antigen-induced allergic responses.
References
- [1] Crivellato, E., Beltrami, C., Mallardi, F., Ribatti, D. and (2003) Paul Ehrlich's doctoral thesis: a milestone in the study of mast cells. Br. J. Haematol. 123: 19–21.
- [2] Metcalfe, D. D., Baram, D., Mekori, Y. A. (1997) Mast cells. Physiol. Rev. 77: 1033–1079.
- [3] Galli, S. J., Kalesnikof, J., Grimbaldeston, M. A., Piliponski, A. M., Williams, C. M. M., Tsai, M. (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23: 749–86.
- [4] Galli, S. J. (1990) New insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab. Invest. 62: 5–33.
- [5] Kitamura, Y., (1989) Heterogeneity of mast cells and phenotypic change between subpopulations. Ann. Rev. Immunol. 7: 59–76.
- [6] Riley, J. F., and West, G. B. (1953) The presence of histamine in tissue mast cells. J. Physiol. 120: 528–537.
- [7] Kinet, J. P. (1999) The high affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17: 931–972.
- [8] Jansen, D. F., Rijcken, B., Schouten, J. P., Kraan, J., Weiss, S. T., Timens, W., Postma, D. S. (1999) The relationship of skin test positivity, high serum total IgE levels and peripheral blood eosinophilia to symptomatic and asymptomatic airway hiperresponsiveness. Am. J. Respir. Crit. Care Med. 159: 924–931.
- [9] Skov, P. S., Permin, H., Malling, H. J. (1977) Quantitative and qualitative estimations of IgE bound to eosinophil leukocytes from hay fever patients. J. Immunol. 54: 1021–1028.
- [10] Galli, S. J., Metcalfe, D. F., Arber, D. A., Dvorak, A. M. (2005) Basophils and mast cells and their disorders. In Williams Hematology, ed. E. Beutler, MA Litchman, BS Coller, TJ Kipps, U Seligsohn. New York: Mc. Graw Hill pp. 879–888.
- [11] Gordon, J. R. (1997) FcεRI-induced cytokine production and gene expression. In IgE receptor (FceRI) function in mast cells and basophils, ed. M. M. Hamawy. Austin, TX: R. G. Landes Company pp. 209–242.
- [12] Echtenacher, B., Mannel, D. N., Hultner, L. (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381: 75–77.
- [13] Supajatura, V., Ushio, H., Nakao, A., Okumura, K., Ra, C., Ogawa, H. (2001) Protective roles of mast cells against enterobacterial infection are mediated by Toll like receptor 4. J. Immunol. 167: 2250–2256.
- [14] Bienenstock, J., Befus, D., Denburg, J., Goto, T., Lee, T., et al. (1985) Comparative aspects of mast cell heterogeneity in different species and sites. Int. Arch. Allergy Appl. Immunol. 77: 126–129.
- [15] Gilfillan, A. M., Tkaczyk, C. (2006) Integrated signaling pathways for mast-cell activation. Nat. Rev. Immunol. 6: 218–230.
- [16] Kraft, S., Kinet, J. P. (2007) New developments in FcεRI regulation, function and inhibition. Nat. Rev. Immunol. 7: 365–378.
- [17] German, S. C., Wurzburg, B. A., Trachevskaya, S. S., Kinet, J. P., Jardetzky, T. S. (2000) Structure of the Fc fragment of human IgE bound to its high affinity receptor FcεRIα. Nature 406: 259–266.
- [18] Donnadieu, E., Jouvin, M. H. and Kinet, J. P. (2000) A second amplifier function for the allergy-associated FcεRIβ subunit. Immunity 12: 515–523.
- [19] Cambier, J. C. (1995) Antigen and Fc receptor signaling. The awsome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155: 3281–3285.
- [20] Eiseman, E., Bolen, J. B. (1992) Engagement of the high affinity IgE receptor activates Src protein-related tyrosine kinases. Nature 355: 78–80.
- [21] Saitoh, S., Arudchandran, A., Manetz, S., Zhang, C. L., Sommers, C. L., Love, P. E., Rivera, J., Samelson, L. E. (2000) LAT is essential for FcεRI-mediated mast cell activation. Immunity 12: 525–535.
- [22] Rivera, J. (2002) Molecular adapters in FcεRI signaling and the allergic response. Curr. Opin. Immunol. 14: 688–693.
- [23] Saito, K., et al. (2003) Btk regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 19: 669–678.
- [24] Parravicini, V., Gadina, M., Kovarova, M., Odom, S., Gonzalez-Espinosa, C., Furumoto, Y., Saitoh, S., Samelson, L. E., O'Shea, J., and Rivera, J. (2002) Fyn kinase initiates complementary signals required for IgE dependent mast cell degranulation. Nat. Immunol. 3: 741–748.
- [25] Gomez, G., Gonzalez-Espinosa, C., Odom, S., Baez, G., Cid, M. E., Ryan, J., and Rivera, J. (2005) Impaired FcεRI dependent gene expression and defective eicosanoid and lymphokine production as a consequence of Fyn-deficiency in mast cells. J. Immunol. 175: 7602–7610.
- [26] Benhamou, M., Ryba, N. J., Kihara, H., Kishikata, H., and Siraganian, R. (1993) Protein tyrosine kinase p72Syk in high affinity IgE receptor signaling. J. Biol. Chem. 268: 23318–23324.
- [27] Nishida, K., Yamasaki, S., Ito, Y., Kabu, K., Hattori, K., tezuka, T., Nishizumi, H., Kitamura, D., Goitsuka, R., Geha, R. S. (2005) FcεRI mediated mast cell degranulation requires calcium independent microtubule dependent translocation of granule to the plasma membrane. J. Cell Biol. 170: 115–126.
- [28] Samayawardhena, L. A., Kapur, R., Craig, A. W. B. (2007) Involvement of Fyn kinase in Kit and integrin mediated rac activation, cytoskeletal reorganization and chemotaxis of mast cells. Blood 109: 3679–3686.
- [29] Chang, E. Y., et al. (1997) Functional effects of over expression of protein kinase C α,β,d,ε and h in the mast cell line RBL-2H3. J. Immunol. 159: 2624–2632.
- [30] Germano, P., Gomez, J., Kazanietz, M. G., et al. (1994) Phosphorylation of the γchain of the high affinity receptor of immunoglobulin E by receptor associated protein kinase C-d. J. Biol. Chem. 269: 23102–23107.
- [31] Lewin, I., Jacob-Hirsch, J., Zang, Z. Ch., Kupersthein, V., Szallasi, Z., Rivera, J. and Razin, E. (1996) Aggregation of the FcεRI in mast cells induces the synthesis of Fos-interacting protein and increases its DNA binding activity: the dependence of protein kinase C. J. Biol. Chem. 271: 1514–1519.
- [32] Nechushtan, H., Leitges, M., Cohen, C., Kay, G., Razin, E. (2000) Inhibition of degranulation and interleukin 6 production in mast cells derived from mice deficient in protein kinase C β. Blood 95: 1752–1757.
- [33] Razin, E., Szallasi, Z., Kazanietz, M. G., Blumberg, P. M., Rivera, J. (1994) Protein kinase C-β and C-εlink the mast cell high receptor for IgE to the expression of c-fos and c-jun. Proc. Natl. Acad. Sci. U. S. A. 91: 7722–7726.
- [34] Abdel-Raheem, I., Hide, I., Yanasse, Y., Shigemoto, Y., Sakai, N., Shirai, Y., Saito, N., Hamada, F., El Mahdy, N., El-Din, E., Elsis, A., Sokar, S. S., Nakata, Y. (2005) Protein kinase C α mediates TNF release process in RBL-2H3 mast cells. Br. J. Pharmacol. 145: 415–423.
- [35] Olivera, A. M. K. (2007) The sphingosine kinase-sphingosine-1-phosphate-axis is a determinant of mast cell function and anaphylaxis. Immunity 26: 287–297.
- [36] Saitoh, S. (2003) The four distal tyrosines are required for LAT-dependent signaling in FcεRI-mediated mast cell activation. J. Exp. Med. 198: 831–843.
- [37] Rosman, K. L., Der, C., Sondek, J. (2005) GEF means go: turning on RHO GTPases with guanine nucleotide- exchange factors. Nat. Rev. Mol. Cell. Biol. 6: 167–180.
- [38] Klemm, S., Gutermuth, J., Hultner, L., Sparwasser, T., Behrendt, H., Peschel, C., Mak, T. W., Jakob, T., Ruland, J. (2006) The Bcl10-Malt1 complex segregates FcεRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation. J. Exp. Med. 203: 337–347.
- [39] Hutchinson, L. E., Mc Closkey, M. A. (1995) Fc epsilon RI-mediated induction of nuclear factor of activated T-cells. J. Biol. Chem. 270: 16333–16338.
- [40] Baumruker and Prieschl, E. (1998) FcεRI-mediated activation of NF-AT. In Signal transduction in mast cells and basophils, ed. E. Razin and J. Rivera. New York: Springer-Verlag pp. 328–336.
- [41] Gomperts, B. D., Kramer, I., Tatham, P. (2002) Signaling pathways operated by non receptor tyrosine kinases. In Signal Transduction, ed. B. Gomperts, I. Kramer and P. Tatham. London: Academic Press, pp. 283–297.
- [42] McKeithan, T. W. (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. U. S. A. 92: 5042–5046.
- [43] Faeder, J. R., Hlavacek, W. S., Rieschl, I., Blinov, M. L., Metzger, H., Redondo, C., Wofsy, C., Goldstein, B. (2003) Investigation of early events in FcεRI mediated signaling using a detailed mathematical model. J. Immunol. 170: 3769–3781.
- [44] Liu, Z. J., Haleem-Smith, H., Chen, X., and Metzger, H. (2001) Unexpected signals in a system subject to kinetic proofreading. Proc. Natl. Acad. Sci. U. S. A. 98: 7289–7294.
- [45] Gonzalez-Espinosa, C., Odom, S., Olivera, A., Hobson, P., Cid-Martinez, M. E., Oliveira-dos-Santos, A., Barra, L., Spiegel, S., Penninger, J. M., Rivera, J. (2003) Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J. Exp. Med. 197: 1453–1465.
- [46] Odom, S., Gomez, G., Kovarova, M., Furumoto, Y., Ryan, J. J., Wright, H. V., Gonzalez-Espinosa, C., Hibbs, M. L., Harder, K. W., Rivera, J. (2004) Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J. Exp. Med. 199: 1–13.
- [47] Xiao, W., Nishimoto, H., Hong, H., Kitaura, J., Nunomura, S., Maeda-Yamamoto, M., Kawakami, Y., Lowell, C., Ra, C., Kawakami, T. (2005) Positive and negative regulation of mast cell activation by Lyn via the FcεRI. J. Immunol. 175: 6885–6892.
- [48] Bousquet, J. P. K., Jeffrey, W. W., Busse, M., Johnson, M., Vignola, A. M. (2000) Asthma: from bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 161: 1720–1732.
- [49] Mc Millan, S., and Lloyd, C. (2004) Prolonged allergen challenge in mice leads to persistent airway remodeling. Clin Exp Allergy 34: 497–501.
- [50] Mc Millan, S. J., Xanthou, G., Lloyd, C. M. (2005) Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-β antibody: effect on the smad signaling pathway. J. Immunol. 174: 5774–5780.
- [51] Shi, Y., Massagué, J. (2003) Mecanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113: 685–700.
- [52] Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A.-K.L., and Flavell, R. (2006) Transforming growth factor β regulation of immune responses. Ann. Rev. Immunol. 24: 99–146.
- [53] Olsson, N., Piek, E., Ten, P., Nilsson, G. (2000) Human mast cell migration in response to members of the transforming growth factor-β family. J. Leukoc. 67: 350–356.
- [54] Smith, T., Ducharme, L., Shaw, S., Parker, C., Brenner, M., Kilshaw, P., Weiss, H. (1994) Murine M290 integrin expression modulated by mast cell activation. Immunity 1: 393.
- [55] Rosbottom, A., Scudamore, C., Von der Mark, D., Thornton, E., Wright, S., Miller, H. (2002) TGF-β1 regulates adhesion of mucosal mast cells homologues to laminin-1 through expression of integrin α7. J. Immunol. 169: 5689–5695.
- [56] Funaba, M., Nakaya, K., Ikeda, T., Murakami, M., Tsuchida, K., Sugino, H. (2006) Requirement of Smad3 for mast cell growth. Cell. Immunol. 240: 47–52.
- [57] Miller, H., Wright, S., Knight, P., Thornton, E. (1999) A novel function of transforming growth factor β1: upregulation of the expression and the IgE-independent extracellular release of a mucosal mast cell granule-specific β-chymase, mouse mast cell protease-1. Blood 93: 3473–3486.
- [58] Bissonette, E., Enciso, J., Befus, A., (1997) TGF-β1 inhibits the release of histamine and tumor necrosis-α factor mast cell through an autocrine pathway. Am. J. Respir. Cell. Mol. Biol 16: 275–282.
- [59] Gebhardt, T., Lorentz, A., Detmer, F., Trautwein, T., Bektas, H., et al. (2005) Growth, fenotype and function of human intestinal mast cells are tightly regulated by transforming growth factor β1. Gut 54: 928–934.
- [60] Gomez, G., Ramirez, C., Rivera, J., Patel, M., Norozian, F., et al. (2005) TGF-β1 inhibits mast cell expression. J. Immunol. 174: 5987–5993.
- [61] Broide, D., Wasserman, S., Alvaro-Garcia, J., Zvaifler, N., Firestein, G. (1989) Transforming growth factor β1selectively inhibits IL-3 dependent mast cell proliferation without affecting mast cell function or differentiation. J. Immunol. 143: 1591–1597.
- [62] Akira, S., Takeda, K. (2004) Toll-like receptors signaling. Nat. Rev. Immunol. 4: 499–511.
- [63] Kawai, T., Akira, S. (2006) Toll-Like Receptors Signalling. Nat. Rev. Immunol. 13: 816–825.
- [64] Janeway, C., Medzhitov, R. (2002) Innate immune recognition. Annu. Rev. Immunol. 20: 197–216.
- [65] Supajatura, V., Ushuo, H., Nakao, A., Akira, S., Okumura, K., et al. (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109: 1351–1359.
- [66] Nigo, Y., Yamashita, M., Hirahara, K., Shinnakasu, R., Inami, M., et al. (2006) Regulation of allergic airway inflammation through Toll-Like receptor 4-mediated modification of mast cell function. Proc. Natl. Acad. Sci. U.S.A. 103: 2286–2291.
- [67] Kraft, M. (2000) The role of bacterial infections in asthma. Clin. Chest. Med. 21: 301–313.
- [68] Fukao, T., Koyasu, S. (2003) PI3K and negative regulation of TLR signaling. Trends Immunol. 24: 358–363.
- [69] Li, X., Tupper, J., Bannerman, D., Winn, R., Rhodes, C., et al. (2003) Phosphoinositide 3 kinase medates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect. Immunol. 71: 4414–4420.
- [70] Kuo, C., Lin, W., Liang, C., Liang, S. (2006) Class I and III phosphoinositol 3'-kinase play distinct roles on TLR siganling pathway. J. Immunol. 176: 5943–5949.
- [71] Fukao, T., Tanabe, M., Terauchi, Y., Ota, T., Matsuda, S., et al. (2002) PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3: 875–881.
- [72] Aksoy, E., Vanden, W., Detienne, S., Amraoui, Z., Fitzgerald, K., et al. (2005) Inhibition of phosphoinositide 3-kinase enhances TRIF-dependent NF-kappa B activation and INF-beta synthesis downstream of Toll-like receptor 3 and 4. Eur. J. Immunol. 35: 2200–2209.
- [73] Zhang, T. Y., Daynes, R. A. (2007) Glucocorticoid conditioning of myeloid progenitors enhances TLR4 signaling via negative regulation of the Phosphatidylinositol 3 kinase Akt pathway. J. Immunol. 178: 2517–2526.