Stability analysis of Lure systems under aperiodic sampled-data control
Mathias Giordani Titton
PPGEE/DELAE, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorCorresponding Author
João Manoel Gomes da Silva Jr.
PPGEE/DELAE, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Correspondence João Manoel Gomes da Silva Jr., PPGEE/DELAE, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
Email: [email protected]
Search for more papers by this authorGiorgio Valmorbida
Laboratoire des Signaux et Systèmes, CentraleSupélec, CNRS, Université Paris-Saclay, Project DISCO Inria-Saclay, Gif-sur-Yvette, France
Search for more papers by this authorMathias Giordani Titton
PPGEE/DELAE, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorCorresponding Author
João Manoel Gomes da Silva Jr.
PPGEE/DELAE, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Correspondence João Manoel Gomes da Silva Jr., PPGEE/DELAE, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
Email: [email protected]
Search for more papers by this authorGiorgio Valmorbida
Laboratoire des Signaux et Systèmes, CentraleSupélec, CNRS, Université Paris-Saclay, Project DISCO Inria-Saclay, Gif-sur-Yvette, France
Search for more papers by this authorAbstract
This article deals with the stability analysis of Lure type systems through aperiodic sampled-data control laws, where the nonlinearity is assumed to be both sector and slope restricted. The proposed method is based on the use of a new class of looped-functionals, which depends on the nonlinearity and its slope, and on a generalized Lure type function, that is quadratic on both the states and the nonlinearity and has a Lure-Postnikov integral term. On this basis, conditions in the form of linear matrix inequalities to certify global or regional asymptotic stability of the closed-loop system are obtained. These conditions are then used in optimization problems for computing the maximum intersampling interval or the maximum sector bounds for which the stability of the sampled-data closed-loop system is guaranteed. Numerical examples to illustrate the results are provided.
CONFLICT OF INTEREST STATEMENT
The authors declare that there is no conflict of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
REFERENCES
- 1Åström KJ, Wittenmark B. Computer-Controlled Systems: Theory and Design. Dover Publications, Inc.; 2013.
- 2Hetel L, Fiter C, Omran H, et al. Recent developments on the stability of systems with aperiodic sampling: an overview. Automatica. 2017; 76: 309-335.
- 3Nešić D, Teel AR, Kokotović PV. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Syst Control Lett. 1999; 38(4-5): 259-270.
- 4Bamieh B, Pearson JB, Francis BA, Tannenbaum A. A lifting technique for linear periodic systems with applications to sampled-data control. Syst Control Lett. 1991; 17(2): 79-88.
- 5Fujioka H. A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices. IEEE Trans Automat Contr. 2009; 54(10): 2440-2445.
- 6Hu LS, Cao YY, Shao HH. Constrained robust sampled-data control for nonlinear uncertain systems. Int J Robust Nonlinear Control. 2002; 12(5): 447-464.
- 7Naghshtabrizi P, Hespanha JP, Teel AR. Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst Control Lett. 2008; 57(5): 378-385.
- 8Fridman E, Seuret A, Richard JP. Robust sampled-data stabilization of linear systems: an input delay approach. Automatica. 2004; 40(8): 1441-1446.
- 9Fridman E. A refined input delay approach to sampled-data control. Automatica. 2010; 46(2): 421-427.
- 10Seuret A. A novel stability analysis of linear systems under asynchronous samplings. Automatica. 2012; 48(1): 177-182.
- 11Seuret A, Gomes da Silva Jr JM. Taking into account period variations and actuator saturation in sampled-data systems. Syst Control Lett. 2012; 61(12): 1286-1293.
- 12Lur'e AI, Postnikov VN. On the theory of stability of control systems. Appl Math Mech. 1944; 8(3): 215-222.
- 13Khalil HK. Nonlinear Systems. Prentice Hall; 2002.
- 14Castelan EB, Tarbouriech S, Queinnec I. Control design for a class of nonlinear continuous-time systems. Automatica. 2008; 44(8): 2034-2039.
- 15Turner MC, Kerr M. Lyapunov functions and L2 gain bounds for systems with slope restricted nonlinearities. Syst Control Lett. 2014; 69: 1-6.
- 16Carrasco J, Turner M, Heath W. Zames–Falb multipliers for absolute stability: from O'Shea's contribution to convex searches. Eur J Control. 2016; 28: 1-19.
- 17Valmorbida G, Drummond R, Duncan SR. Regional analysis of slope-restricted Lurie systems. IEEE Trans Automat Contr. 2018; 64(3): 1201-1208.
- 18Gonzaga CA, Jungers M, Daafouz J. Stability analysis of discrete-time Lur'e systems. Automatica. 2012; 48(9): 2277-2283.
- 19Turner M, Drummond R. Discrete-time systems with slope restricted nonlinearities: Zames–Falb multiplier analysis using external positivity. Int J Robust Nonlinear Control. 2021; 31: 2255-2273.
- 20Zhang F, Yu W, Wen G, Zemouche A. Practical absolute stabilization of Lur'e systems via periodic event-triggered feedback. Proceedings of the 2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM); 2019: 42–47.
- 21Moreira LG, Gomes da Silva Jr JM, Tarbouriech S, Seuret A. Observer-based event-triggered control for systems with slope-restricted nonlinearities. Int J Robust Nonlinear Control. 2020; 30: 7409-7428.
- 22Park JM, Lee SY, Park PG. An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems. Nonlinear Anal Hybrid Syst. 2018; 29: 333-347.
- 23Hao F, Zhao X. Absolute stability of Lurie networked control systems. Int J Robust Nonlinear Control. 2010; 20(12): 1326-1337.
- 24Zeng HB, He Y, Wu M, Xiao SP. Absolute stability and stabilization for Lurie networked control systems. Int J Robust Nonlinear Control. 2011; 21(14): 1667-1676.
- 25Yakubovich V. The method of matrix inequalities in the stability theory of nonlinear control systems. II. Absolute stability in a class of nonlinearities with a condition on the derivative. Automat Remote Control. 1965; 26: 577-592.
- 26Suykens J, Vandewalle J, De Moor B. An absolute stability criterion for the Lur'e problem with sector and slope restricted nonlinearities. IEEE Trans Circuits Syst I Fundam Theory Appl. 1998; 45(9): 1007-1009.
10.1109/81.721270 Google Scholar
- 27Park P. Stability criteria of sector-and slope-restricted Lur'e systems. IEEE Trans Automat Contr. 2002; 47(2): 308-313.
- 28Hu T, Huang B, Lin Z. Absolute stability with a generalized sector condition. IEEE Trans Automat Contr. 2004; 49(4): 535-548.
- 29Guo LD, Huang SJ, Wu LB. Novel delay-partitioning approaches to stability analysis for uncertain Lur'e systems with time-varying delays. J Franklin Inst. 2021; 358: 3884-3900.
- 30Seifullaev RE, Fradkov AL. Robust nonlinear sampled-data system analysis based on Fridman's method and S-procedure. Int J Robust Nonlinear Control. 2016; 26(2): 201-217.
- 31Seifullaev RE, Fradkov AL. Sampled-data control of nonlinear systems based on Fridman's analysis and passification design. IFAC-PapersOnLine. 2015; 48(11): 685-690.
10.1016/j.ifacol.2015.09.267 Google Scholar
- 32Gabriel GW, Geromel JC. Sampled-data control of Lur'e systems. Nonlinear Anal Hybrid Syst. 2021; 40:100994.
- 33Huang Y, Bao H. Master-slave synchronization of complex-valued delayed chaotic Lur'e systems with sampled-data control. Appl Math Comput. 2020; 379:125261.
- 34Louis J, Jungers M, Daafouz J. Sufficient LMI stability conditions for Lur'e type systems governed by a control law designed on their Euler approximate model. Int J Control. 2015; 88(9): 1841-1850.
- 35Titton M, Gomes da Silva Jr JM, Valmorbida G. Stability of sampled-data control for Lurie systems with slope-restricted nonlinearities. Proceedings of the Anais Do XXIII Congresso Brasileiro de Automatica (CBA2020), Porto Alegre, Brazil; 2020: 1-6.
- 36Queinnec I, Tarbouriech S, Valmorbida G, Zaccarian L. Design of saturating state-feedback with sign-indefinite quadratic forms. IEEE Trans Automat Contr. 2022; 67(7): 3507-3519.
- 37Palmeira AHK, Gomes da Silva Jr JM, Flores JV. Regional stabilization of nonlinear sampled-data control systems: a quasi-LPV approach. Eur J Control. 2021; 59: 301-312.
- 38Briat C. Convergence and equivalence results for the Jensen's inequality—application to time-delay and sampled-data systems. IEEE Trans Automat Contr. 2011; 56(7): 1660-1665.
- 39Seuret A, Gouaisbaut F. Stability of linear systems with time-varying delays using Bessel–Legendre inequalities. IEEE Trans Automat Contr. 2018; 63(1): 225-232.
- 40Titton M, Gomes da Silva Jr JM, Valmorbida G, Jungers M. Stabilization of sampled-data lure systems with slope-restricted nonlinearities. Proceedings of the 60th IEEE Conference on Decision and Control (CDC 2021); 2021: 6775–6780.