A data-based event-triggered control for switching topology nonlinear multiagent systems with DoS attacks
Zeyi Liu
College of Control Science and Engineering, Bohai University, Jinzhou, China
Search for more papers by this authorCorresponding Author
Liang Cao
College of Mathematical Sciences, Bohai University, Jinzhou, China
Correspondence Liang Cao, College of Mathematical Sciences, Bohai University, Jinzhou 121013, Liaoning, China.
Email: [email protected]
Search for more papers by this authorHongjing Liang
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorLihua Tan
College of Electronic and Information Engineering, Southwest University, Chongqing, China
Search for more papers by this authorZeyi Liu
College of Control Science and Engineering, Bohai University, Jinzhou, China
Search for more papers by this authorCorresponding Author
Liang Cao
College of Mathematical Sciences, Bohai University, Jinzhou, China
Correspondence Liang Cao, College of Mathematical Sciences, Bohai University, Jinzhou 121013, Liaoning, China.
Email: [email protected]
Search for more papers by this authorHongjing Liang
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorLihua Tan
College of Electronic and Information Engineering, Southwest University, Chongqing, China
Search for more papers by this authorSummary
In this paper, a secure cooperative control strategy which integrates the data-driven control method and the backstepping framework is proposed for a class of discrete-time nonlinear multiagent systems with denial-of-service (DoS) attacks. First, by designing special index functions, we overcome the algebraic loop problem in the backstepping framework to propose a data-driven backstepping control method which does not use the Lyapunov theory to design the controller. Second, the problem of DoS attacks in communication channels is solved by switching topology strategy. Then, an event-triggered mechanism based on synchronization error is used to save communication resources, which does not have a great negative impact on the control performance. Moreover, an event-triggered cooperative strategy is constructed to ensure that all signals and tracking errors of the closed-loop system are bounded. Finally, two simulation examples verify the effectiveness of the proposed control scheme.
CONFLICT OF INTEREST STATEMENT
The authors declare that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1 Cao L, Cheng Z, Liu Y, Li H. Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Trans Neural Netw Learn Syst. 2022; 1-11. doi:10.1109/TNNLS.2022.3210269
- 2Liu Y, Yao D, Wang L, Lu S. Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles. IEEE Trans Syst Man Cybern: Syst. 2022; 53: 264-274. doi:10.1109/TSMC.2022.3179444
- 3Shen D. Data-driven learning control for stochastic nonlinear systems: multiple communication constraints and limited storage. IEEE Trans Neural Netw Learn Syst. 2017; 29(6): 2429-2440.
- 4Wang M, Shi H, Wang C. Distributed cooperative learning for discrete-time strict-feedback multi agent systems over directed graphs. IEEE/CAA J Automat Sin. 2022; 9: 1831-1844. doi:10.1109/JAS.2022.105542
10.1109/JAS.2022.105542 Google Scholar
- 5Xu Y, Sun J, Wang G, Wu Z. Distributed adaptive synchronization control and its application to circuit systems. IEEE Trans Circuits Syst I: Regul Pap. 2021; 68(5): 2246-2256.
- 6Pan Y, Wu Y, Lam H-K. Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans Fuzzy Syst. 2022; 30: 4359-4368. doi:10.1109/TFUZZ.2022.3148875
- 7Wang W, Xiang Z. Distributed consensus tracking control for nonlinear multiagent systems with state delays and unknown control coefficients. Int J Robust Nonlinear Control. 2022; 32(4): 2050-2068.
- 8Zeng H, He Y, Teo KL. Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica. 2022; 138:110030.
- 9Pan Y, Li Q, Liang H, Lam H-K. A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans Fuzzy Syst. 2021; 30: 3812-3822. doi:10.1109/TFUZZ.2021.3130201
- 10Liang H, Chen L, Pan Y, Lam H-K. Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative-antagonistic interactions. IEEE Trans Fuzzy Syst. 2022; 31: 1362-1376. doi:10.1109/TFUZZ.2022.3200730
- 11
Cao L, Pan Y, Liang H, Huang T. Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Trans Cybern. 2022; 1-12. doi:10.1109/TCYB.2022.3226873
10.1109/TCYB.2022.3202486 Google Scholar
- 12Shen D, Liu C, Wang L, Yu X. Iterative learning tracking for multisensor systems: a weighted optimization approach. IEEE Trans Cybern. 2019; 51(3): 1286-1299.
- 13Chen C, Wen C, Liu Z, Xie K, Zhang Y, Chen CLP. Adaptive consensus of nonlinear multi-agent systems with non-identical partially unknown control directions and bounded modelling errors. IEEE Trans Automat Contr. 2016; 62(9): 4654-4659.
- 14 Liang H, Du Z, Huang T, Pan Y. Neuroadaptive performance guaranteed control for multiagent systems with power integrators and unknown measurement sensitivity. IEEE Trans Neural Netw Learn Syst. 2022; 1-12. doi:10.1109/TNNLS.2022.3160532
- 15Xie W, Cabecinhas D, Cunha R, Silvestre C. Adaptive backstepping control of a quadcopter with uncertain vehicle mass, moment of inertia, and disturbances. IEEE Trans Ind Electron. 2021; 69(1): 549-559.
- 16Ji W, Pan Y, Zhao M. Adaptive fault-tolerant optimized formation control for perturbed nonlinear multiagent systems. Int J Robust Nonlinear Control. 2022; 32(6): 3386-3407.
- 17Bu X, Liang J, Hou Z, Chi R. Data-driven terminal iterative learning consensus for nonlinear multiagent systems with output saturation. IEEE Trans Neural Netw Learn Syst. 2021; 32(5): 1964-1973.
- 18Li Y, Chen C, Wong W. Power control for multi-sensor remote state estimation over interference channel. Syst Control Lett. 2019; 126: 1-7.
- 19Zhang L, Zong G, Zhao X, Zhao N. Output reachable set synthesis of event-triggered control for singular Markov jump systems under multiple cyber-attacks. IEEE/ACM Trans Netw. 2022; 30: 2849-2857. doi:10.1109/TNET.2022.3183862
- 20Liang H, Du Z, Huang T, Pan Y. Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans Fuzzy Syst. 2022; 30: 4359-4368. doi:10.1109/TFUZZ.2022.3148875
- 21Zhang D, Liu L, Feng G. Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack. IEEE Trans Cybern. 2018; 49(9): 1501-1511.
- 22Deng C, Wen C. Distributed resilient observer-based fault-tolerant control for heterogeneous multiagent systems under actuator faults and DoS attacks. IEEE Trans Control Netw Syst. 2020; 7(3): 1308-1318.
- 23Shen D, Qu G, Yu X. Averaging techniques for balancing learning and tracking abilities over fading channels. IEEE Trans Automat Contr. 2020; 66(6): 2636-2651.
- 24Jin Y, Zhang Y, Jing Y, Fu J. An average dwell-time method for fault-tolerant control of switched time-delay systems and its application. IEEE Trans Ind Electron. 2018; 66(4): 3139-3147.
- 25 Xu Y, Wu Z. Data-efficient off-policy learning for distributed optimal tracking control of HMAS with unidentified exosystem dynamics. IEEE Trans Neural Netw Learn Syst. 2022. doi:10.1109/TNNLS.2022.3172130
- 26Wang X, Ding D, Ge X, Han Q-L. Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: the adaptive event-triggered case. Int J Robust Nonlinear Control. 2022; 32(5): 2760-2779.
- 27Li X, Chen C, Lyu Y, Xie K. Event-based resilience to DoS attacks on communication for consensus of networked Lagrangian systems. Int J Robust Nonlinear Control. 2021; 31(6): 1834-1850.
- 28Li Y, Shi L, Cheng P, Chen J, Quevedo DE. Jamming attacks on remote state estimation in cyber-physical systems: a game-theoretic approach. IEEE Trans Automat Contr. 2015; 60(10): 2831-2836.
- 29Feng S, Ishii H. Dynamic quantized consensus of general linear multi-agent systems under denial-of-service attacks. IEEE Trans Control Netw Syst. 2022; 9: 562-574. doi:10.1109/TCNS.2022.3140684
- 30Du S, Xu W, Qiao J, Ho DWC. Resilient output synchronization of heterogeneous multiagent systems with DoS attacks under distributed event−/self-triggered control. IEEE Trans Neural Netw Learn Syst. 2021; 34: 1169-1178. doi:10.1109/TNNLS.2021.3105006
- 31Feng Z, Hu G. Secure cooperative event-triggered control of linear multiagent systems under DoS attacks. IEEE Trans Control Syst Technol. 2019; 28(3): 741-752.
- 32Savino HJ, dos Santos CRP, Souza FO, Pimenta LCA, de Oliveira M, Palhares RM. Conditions for consensus of multi-agent systems with time-delays and uncertain switching topology. IEEE Trans Ind Electron. 2016; 63(2): 1258-1267.
- 33Xiao F, Wang L. Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Trans Automat Contr. 2008; 53(8): 1804-1816.
- 34Zhang D, Ye Z, Feng G, Li H. Intelligent event-based fuzzy dynamic positioning control of nonlinear unmanned marine vehicles under dos attack. IEEE Trans Cybern. 2021; 52: 13486-13499. doi:10.1109/TCYB.2021.3128170
- 35
Lin G, Li H, Ahn CK, Yao D. Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Trans Neural Netw Learn Syst. 2022; 1-11. doi:10.1109/TNNLS.2022.3166531
10.1109/TNNLS.2022.3166531 Google Scholar
- 36Lin G, Li H, Ma H, Zhou Q. Distributed containment control for human-in-the-loop MASs with unknown time-varying parameters. IEEE Trans Circuits Syst I: Regul Pap. 2022; 69(12): 5300-5311.
- 37 Zheng X, Li H, Ahn CK, Yao D. NN-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Trans Aerosp Electron Syst. 2022; 1-11. doi:10.1109/TAES.2022.3205566
- 38Yao D, Li H, Shi Y. Adaptive event-triggered sliding mode control for consensus tracking of nonlinear multi-agent systems with unknown perturbations. IEEE Trans Cybern. 2022; 53: 2672-2684. doi:10.1109/TCYB.2022.3172127
10.1109/TCYB.2022.3172127 Google Scholar
- 39Xu Y, Wu Z, Pan Y. Observer-based dynamic event-triggered adaptive control of distributed networked systems with application to ground vehicles. IEEE Trans Ind Electron. 2022; 70: 4148-4157. doi:10.1109/TIE.2022.3176242
- 40Liu Z, Lin W, Yu X, Rodríguez-Andina JJ, Gao H. Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances. IEEE Trans Ind Electron. 2022; 69(10): 10500-10509.
- 41Shangguan X-C, Zhang C-K, et al. Resilient load frequency control of power systems to compensate random time delays and time-delay attacks. IEEE Trans Ind Electron. 2023; 70(5): 5115-5128.
- 42Sun J, Zhang H, Wang Y, Sun S. Fault-tolerant control for stochastic switched IT2 fuzzy uncertain time-delayed nonlinear systems. IEEE Trans Cybern. 2022; 52(2): 1335-1346.
- 43 Ren H, Ma H, Li H, Lu R. A disturbance observer based intelligent control for nonstrict-feedback nonlinear systems. Sci Chin-Technol Sci. 2022; 10.1007/s11431-022-2126-7.
- 44Chen C, Lewis FL, Li X. Event-triggered coordination of multi-agent systems via a Lyapunov-based approach for leaderless consensus. Automatica. 2022; 136:109936.
- 45Li Y, Liu L, Hua C, Feng G. Event-triggered/self-triggered leader-following control of stochastic nonlinear multiagent systems using high-gain method. IEEE Trans Cybern. 2021; 51(6): 2969-2978.
- 46Han X, Zhao X, Sun T, Wu Y, Xu N, Zong G. Event-triggered optimal control for discrete-time switched nonlinear systems with constrained control input. IEEE Trans Syst Man Cybern: Syst. 2021; 51(12): 7850-7859.
- 47Wang Y, Zhao J. Periodic event-triggered sliding mode control for switched uncertain T-S fuzzy systems with a logistic adaptive event-triggering scheme. IEEE Trans Fuzzy Syst. 2022; 30: 4115-4126. doi:10.1109/TFUZZ.2022.3141749
- 48Gao H, Li Z, Yu X, Qiu J. Hierarchical multi-objective heuristic for PCB assembly optimization in a beam-head surface mounter. IEEE Trans Cybern. 2020; 52: 6911-6924. doi:10.1109/TCYB.2020.3040788
- 49Shi P, Sun W, Yang X, Rudas IJ, Gao H. Master-slave synchronous control of dual-drive gantry stage with cogging force compensation. IEEE Trans Syst Man Cybern: Syst. 2022; 53(1): 216-225.
- 50Li Y, Min X, Tong S. Observer-based fuzzy adaptive inverse optimal output feedback control for uncertain nonlinear systems. IEEE Trans Fuzzy Syst. 2021; 29(6): 1484-1495.
- 51Li Y, Min X, Tong S. Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Trans Fuzzy Syst. 2020; 28(10): 2363-2374.