Adaptive error feedback regulation problem for 1D wave equation
Wei Guo
School of Statistics, University of International Business and Economics, Beijing, China
Search for more papers by this authorCorresponding Author
Hua-cheng Zhou
School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
Correspondence
Hua-cheng Zhou, School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
Email: [email protected]
Search for more papers by this authorMiroslav Krstic
Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA
Search for more papers by this authorWei Guo
School of Statistics, University of International Business and Economics, Beijing, China
Search for more papers by this authorCorresponding Author
Hua-cheng Zhou
School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
Correspondence
Hua-cheng Zhou, School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
Email: [email protected]
Search for more papers by this authorMiroslav Krstic
Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA
Search for more papers by this authorSummary
By using the adaptive control approach, we solve the error feedback regulator problem for the one-dimensional wave equation with a general harmonic disturbance anticollocated with control and with two types of disturbed measurements, ie, one collocated with control and the other anti-collocated with control. Different from the classical error feedback regulator design, which is based on the internal mode principle, we give the adaptive servomechanism design for the system by making use of the measured tracking error (and its time derivative) and the estimation mechanism for the parameters of the disturbance and of the unknown reference. Constructing auxiliary systems and observer and applying the backstepping method for infinite-dimensional system play important roles in the design. The control objective, which is to regulate the tracking error to zero and to keep the states bounded, is achieved.
REFERENCES
- 1Callier FM, Desoer CA. Stabilization, tracking and disturbance rejection in multivariable convolution systems. Ann Soc Sci Bruxelles Sér. 1980; 94: 7-51.
- 2Davison E. The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans Autom Control. 1976; 21(1): 25-34.
- 3Desoer C, Lin C-A. Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Trans Autom Control. 1985; 30(9): 861-867.
- 4Francis BA. The linear multivariable regulator problem. SIAM J Control Optim. 1977; 15(3): 486-505.
- 5Francis BA, Wonham WM. The internal model principle of control theory. Automatica. 1976; 12(5): 457-465.
- 6Isidori A, Byrnes CI. Output regulation of nonlinear systems. IEEE Trans Autom Control. 1990; 35(2): 131-140.
- 7Pohjolainen S. Robust multivariable PI-controller for infinite dimensional systems. IEEE Trans Autom Control. 1982; 27(1): 17-30.
- 8Kobayashi T. Regulator design for distributed parameter systems with constant disturbances. Int J Syst Sci. 1984; 15(4): 375-399.
- 9Byrnes CI, Laukó IG, Gilliam DS., Shubov VI. Output regulation problem for linear distributed parameter systems. IEEE Trans Autom Control. 2000; 45(12): 2236-2252.
- 10Schumacher JM. Finite-dimensional regulators for a class of infinite-dimensional systems. Syst Control Lett. 1983; 3(1): 7-12.
- 11Rebarber R, Weiss G. Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica. 2003; 39(9): 1555-1569.
- 12Natarajan V, Gilliam D, Weiss G. The state feedback regulator problem for regular linear systems. IEEE Trans Autom Control. 2014; 59(10): 2708-2723.
- 13Deutscher J. Output regulation for linear distributed-parameter systems using finite-dimensional dual observers. Automatica. 2011; 47(11): 2468-2473.
- 14Hämäläinen T, Pohjolainen S. Robust regulation of distributed parameter systems with infinite-dimensional exosystems. SIAM J Control Optim. 2010; 48(8): 4846-4873.
- 15Immonen E, Pohjolainen S. Output regulation of periodic signals for DPS: an infinite-dimensional signal generator. IEEE Trans Autom Control. 2005; 50(11): 1799-1804.
- 16Immenon E, Pohjolainen S. What periodic signals can an exponentially stabilizable linear feedforward control system asymptotically track? SIAM J Control Optim. 2006; 44(6): 2253-2268.
- 17Logemann H, Ilchmann A. An adaptive servomechanism for a class of infinite-dimensional systems. SIAM J Control Optim. 1994; 32(4): 917-936.
- 18Kobayashi T, Oya M. Adaptive servomechanism design for boundary control system. IMA J Math Control Inform. 2002; 19(3): 279-295.
10.1093/imamci/19.3.279 Google Scholar
- 19Guo W, Guo B-Z. Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance. Automatica. 2016; 68: 194-202.
- 20Krstic M, Smyshlyaev A. Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia PA: SIAM; 2008.
- 21Krstic M, Guo B-Z, Balogh A, Smyshlyaev A. Control of a tip-force destabilized shear beam by non-collocated observer-based boundary feedback. SIAM J Control Optim. 2008; 47(2): 553-574.
- 22Smyshlyaev A, Krstic M. Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Syst Control Lett. 2009; 58(8): 617-623.
- 23Krstic M, Guo B-Z, Balogh A, Smyshlyaev A. Output-feedback stabilization of an unstable wave equation. Automatica. 2008; 44(1): 63-74.
- 24Krstic M, Smyshlyaev A. Adaptive boundary control for unstable parabolic PDEs—part I: Lyapunov design. IEEE Trans Autom Control. 2008; 53(7): 1575-1591.
- 25Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs—part II: estimation-based designs. Automatica. 2007; 43(9): 1543-1556.
- 26Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs—part III: output-feedback examples with swapping identifiers. Automatica. 2007; 43(9): 1557-1564.
- 27Krstic M. Adaptive control of an anti-stable wave PDE. Paper presented at: 2009 American Control Conference; 2010; St. Louis, MO.
- 28Bresch-Pietri D, Krstic M. Output-feedback adaptive control of a wave PDE with boundary anti-damping. Automatica. 2014; 50(5): 1407-1415.
- 29Smyshlyaev A, Orlov Y, Krstic M. Adaptive identification of two ustable PDEs with boundary sensing and actuation. Int J Adapt Control Signal Process. 2009; 23(2): 131-149.
- 30Guo W, Guo B-Z. Stabilization and regulator design for a one-dimensional unstable wave equation with input harmonic disturbance. Int J Robust Nonlinear Control. 2013; 23(5): 514-533.
- 31Guo W, Guo B-Z. Parameter estimation and non-collocated adaptive stabilization for a wave equation with general boundary harmonic disturbance. IEEE Trans Autom Control. 2013; 58(7): 1631-1643.
- 32Deutscher J. Finite-time output regulation for linear 2 × 2 hyperbolic systems using backstepping. Automatica. 2017; 75: 54-62.
- 33Guo W, Shao Z-C, Krstic M. Adaptive rejection of harmonic disturbance anticollocated with control in 1D wave equation. Automatica. 2017; 79: 17-26.
- 34Walker JA. Dynamical Systems and Evolution Equations: Theory and Applications. New York, NY: Plenum Press; 1980.
10.1007/978-1-4684-1036-5 Google Scholar
- 35Weiss G. Admissibility of unbounded control operators. SIAM J Control Optim. 1989; 27(3): 527-545.
- 36Zhou H-C, Weiss G. Output feedback exponential stabilization of a nonlinear 1-D wave equation with boundary input. Paper presented at: IFAC 2017 World Congress; 2017; Toulouse, France.
- 37Tong S, Zhang L, Li Y. Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans Syst Man Cybern Syst. 2016; 46(1): 37-47.
- 38Tong S, Li Y, Sui S. Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans Fuzzy Syst. 2016; 24(6): 1441-1454.