Approaches to Measure Chemical Similarity – a Review
Nina Nikolova
Procter and Gamble, Eurocor, Central Product Safety, 100 Temselaan, B-1853 Strombeek-Bever, Belgium, Fax 32 2 5683098, Tel 32 2 456 2076, Tel 32 2 456 801
Search for more papers by this authorJoanna Jaworska
Procter and Gamble, Eurocor, Central Product Safety, 100 Temselaan, B-1853 Strombeek-Bever, Belgium, Fax 32 2 5683098, Tel 32 2 456 2076, Tel 32 2 456 801
Search for more papers by this authorNina Nikolova
Procter and Gamble, Eurocor, Central Product Safety, 100 Temselaan, B-1853 Strombeek-Bever, Belgium, Fax 32 2 5683098, Tel 32 2 456 2076, Tel 32 2 456 801
Search for more papers by this authorJoanna Jaworska
Procter and Gamble, Eurocor, Central Product Safety, 100 Temselaan, B-1853 Strombeek-Bever, Belgium, Fax 32 2 5683098, Tel 32 2 456 2076, Tel 32 2 456 801
Search for more papers by this authorAbstract
Although the concept of similarity is a convenient for humans, a formal definition of similarity between chemical compounds is needed to enable automatic decision-making. The objective of similarity measures in toxicology and drug design is to allow assessment of chemical activities. The ideal similarity measure should be relevant to the activity of interest. The relevance could be established by exploiting the knowledge about fundamental chemical and biological processes responsible for the activity. Unfortunately, this knowledge is rarely available and therefore different approximations have been developed based on similarity between structures or descriptor values. Various methods are reviewed, ranging from two-dimensional, three-dimensional and field approaches to recent methods based on “Atoms in Molecules” theory. All these methods attempt to describe chemical compounds by a set of numerical values and define some means for comparison between them. The review provides analysis of potential pitfalls of this methodology – loss of information in the representations of molecular structures – the relevance of a particular representation and chosen similarity measure to the activity. A brief review of known methods for descriptor selection is also provided. The popular “neighborhood behavior” principle is criticized, since proximity with respect to descriptors does not necessarily mean proximity with respect to activity. Structural similarity should also be used with care, as it does not always imply similar activity, as shown by examples. We remind that similarity measures and classification techniques based on distances rely on certain data distribution assumptions. If these assumptions are not satisfied for a given dataset, the results could be misleading. A discussion on similarity in descriptor space in the context of applicability domain assessment of QSAR models is also provided. Finally, it is shown that descriptor based similarity analysis is prone to errors if the relationship between the activity and the descriptors has not been previously established. A justification for the usage of a particular similarity measure should be provided for every specific activity by expert knowledge or derived by data modeling techniques.
References
- 1 W. V. Quine, Natural kinds. In Ontological relativity and other essays, Columbia University Press, New York, NY, 1977.
- 2 N. Goodman (Ed.), Seven structures on similarity. Problems and Projects, 437–447. Bobbs-Merril, New York, 1972.
- 3 V. J. Gillet, D. J. Wild, P. Willett, J. Bradshaw, Similarity and Dissimilarity Methods for Processing Chemical Structure databases, Comput. J. 1998, 41, No.8
- 4 J. Bajorath, Virtual screening in drug discovery: Methods, expectations and reality, Current Drug Discovery, http://www.current-drugs.com/CDD/CDD/CDDPDF/issue2–03/BAJORATH.pdf (March 2002)
- 5 Trends in Fragrance Research: About Structure-Odour Relationships, The BASICS archives, http://www.xs4all.nl/~bacis/bnb01081.html
- 6 L. Turin, Y. Fumiko, Structure-odor relations: a modern perspective, http://www.physiol.ucl.ac.uk/research/turin l/review final.pdf
- 7 A. McNaught, A. Wilkinson (Eds.), IUPAC Compendium of Chemical Terminology. The Gold Book, Second Edition, Blackwell Science 1997.
- 8 H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, VCH, Weinheim, 1993.
- 9 H. Kubinyi (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM Science Publishers B. V., Leiden, 1993.
- 10 P. Willett, Chemoinformatics – similarity and diversity in chemical libraries, Analytical Biotechnology 2000, 11, 85–88.
- 11 M. Randic, On Characterization of Chemical Structure, J. Chem. Inf. Comput. Sci. 1997, 37, 672–672.
- 12 H. Hosoya, M. Gotoh, M. Murakami, S. Ikeda, Topological Index and Thermodynamic Properties. 5. How Can We Explain the Topological Dependency of Thermodynamic Properties of Alkanes with the Topology of Graphs? J. Chem. Inf. Comput. Sci. 1999, 39, 192–196.
- 13 H. Wiener, Structural determination of Paraffin Boiling Points, J. Am. Chem. Soc. 1947, 69, 17–20.
- 14 M. Randic, Characterization of Molecular Branching, J. Am. Chem. Soc. 1975, 97, 6609–6615.
- 15 D. Bonchev, N. Trinajstic, Information Theory, Distance Matrix, and Molecular Branching, J. Chem. Phys. 1977, 67, 4517–4533.
- 16 S. Basak, V. Magnuson, Determining structural similarity of chemicals using graph-theoretic indices, Discrete Appl. Math. 1988, 19, 17–44.
- 17 A. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl. Chem. 1983, 55, 199–206.
- 18 M. Randic, On Characterization of Chemical Structure, J. Chem. Inf. Comput. Sci. 1997, 37, 672–672.
- 19 P. Willett, J. Barnard, G. Downs, Chemical Similarity Searching, J. Chem. Inf. Comput. Sci. 1998, 38, 983–996.
- 20 D. M. Bayada, H. Hamersma, V. J. van Geerestein, Molecular Diversity and Representativity in Chemical Databases, J. Chem. Inf. Comput. Sci. 1999, 39, 1–10.
- 21 D. R. Flower, On the Properties of Bit String-Based Measures of Chemical Similarity, J. Chem. Inf. Comput. Sci. 1998, 38, 379–386.
- 22 F. R. Burden, Molecular identification number for substructure searches, J. Chem. Inf. Comput. Sci. 1989, 29, 225–227.
- 23 R. S. Pearlman, Novel Software Tools for addressing Chemical Diversity http://www.netsci.org/Science/Combichem/feature08.html
- 24 R. S. Pearlman, K. M. Smith, Metric Validation And The Receptor-Relevant Subspace Concept, J. Chem. Inf. Comput. Sci. 1999, 39, 28–35.
- 25 J. M. Blaney, E. J. Martin, Computational approaches for combinatorial library design and molecular diversity analysis, Curr. Opin. Chem. Biol. 1997, 1, 54–59.
- 26 F. R. Burden, D. A. Winkler, New QSAR Methods Applied to Structure-Activity Mapping and Combinatorial Chemistry, J. Chem. Inf. Comput. Sci. 1999, 39, 236–242.
- 27 B. Mohar, Laplace eigenvalues of graph – a survey. Discrete Math. 1992, 109, 171–183.
- 28 W. Fisanick, K. Cross, A. Rusinko, Similarity Searching on CAS Registry Substances 1. Global Molecular Property and Generic Atom Triangle Geometric Searching, J. Chem. Inf. Comput. Sci. 1992, 32, 664–674.
- 29 P. Willett, Searching for pharmacophoric patterns in databases of three-dimensional chemical structures, J. Mol. Recognit. 1995, 8, 290–303.
- 30 R. D. Cramer III, D. E. Patterson, J. D. Bunce, J. Am. Chem. Soc. 1988, 110, 5959–5967.
- 31 R. Carbo-Dorca, D. Robert, L. Amat, X. Girones, E. Besalu, University of Girona, Spain, Molecular Quantum Similarity in Qsar and Drug Design Coulson's Challenge Series, Lect. Notes Chem., Vol. 73
- 32 R. Carbo, L. Leyda, M. Arnau, How Similar is a Molecule to Another? An Electron Density Measure of Similarity Between two Molecular Structures, Int. J. Quantum Chem. 1980, 17, 1185–1189.
- 33 E. E. Hodgkin, W. G. Richards, Molecular Similarity Based on Electrostatic Potential and Electric Field, Int. J . Quantum Chem. 1987, 14, 105–110.
- 34 E. E. Hodgkin, W. G. Richards, A Semi-Empirical Method for Calculating Molecular Similarity, Chem. Commun. 1986, 19, 1342–1344.
- 35 M. Manaut, F. Sanz, J. Jose, M. Milesi, Automatic Search for Maximum Similarity between Molecular Electrostatic Potential Distributions, J. Comput.-Aided Mol. Design 1991, 5, 1–380.
- 36 J. Cioslowski, E. D. Fleischmann, Assessing Molecular Similarity from Results of ab Initio Electronic Structure Calculations, J. Am. Chem. Soc. 1991, 113, 64–67.
- 37 A. M. Meyer, W. G. Richards, Similarity of Molecular Shape, J. Comput.-Aided Mol. Design 1991, 5, 426–439.
- 38 A. C. Good, W. G. Richards, Rapid Evaluation of Shape Similarity Using Gaussian Functions, J. Chem. Inf. Comput. Sci. 1993, 33, 112–116.
- 39 B. D. Silverman, D. E. Platt, Comparative Molecular Moment Analysis (CoMMA): 3D-QSAR without Molecular Superposition, J. Med. Chem. 1996, 39, 2129–2140.
- 40 R. Bursi, T. Dao, T. van Wijk, M. de Gooyer, E. Kellenbach, P. Verwer, Comparative Spectra Analysis (CoSA): Spectra as Three-Dimensional Molecular Descriptors for the Prediction of Biological Activities, J. Chem. Inf. Comput. Sci. 1999, 39, 861–867.
- 41 D. B. Turner, P. Willett, A. M. Ferguson, T. W. Heritage, Evaluation of a novel molecular vibration-based descriptor (EVA) for QSAR studies: 2. Model validation using a benchmark steroid dataset, J. Comput.-Aided Mol. Design 1999, 13, 271–296.
- 42 H. Patel, M. T. D. Cronin, A Novel Index for the Description of Molecular Linearity, J. Chem. Inf. Comput. Sci. 2001, 41, 1228–1236.
- 43 L. B. Kier, A Shape Index from Molecular Graphs, Quant. Struct.-Act. Relat. 1985, 4, 109–116.
- 44 R. W. Taft, Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification and Hydrolysis of Esters, J. Am. Chem. Soc. 1952, 74, 3120–3128.
- 45 R. W. Taft, The General Nature of the Proportionality of Polar Effects of Substituent Groups in Organic Chemistry, J. Am. Chem. Soc. 1953, 75, 4231–4238.
- 46 A. Verloop, The STERIMOL Approach to Drug Design, Marcel Dekker, New York, 1987.
- 47
D. E. Walters, A. J. Hopfinger, Case studies of the application of molecular shape analysis to elucidate drug action, J. Mol. Struct.: THEOCHEM, 1986, 134, 317–323.
10.1016/0166-1280(86)80004-5 Google Scholar
- 48 B. B. Goldman, W. T. Wipke, Quadratic Shape Descriptors. 1. Rapid Superposition of Dissimilar Molecules Using Geometrically Invariant Surface Descriptors, J. Chem. Inf. Comput. Sci. 2000, 40, 644–658.
- 49 J. S. Duca, A. J. Hopfinger, Estimation of Molecular Similarity Based on 4D-QSAR Analysis: Formalism and Validation, J. Chem. Inf. Comput. Sci. 2001, 41, 1367–1387.
- 50 R. Todeschini, P. Gramatica, 3D-Modelling and prediction by WHIM descriptors. Part 5. Theory Development and Chemical Meaning of WHIM descriptors, Quant. Struct.-Act. Relat. 1997, 16, 113–119.
- 51 D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd Edition, National Institute of Standards & Technology, USA, CRC Press.
- 52 H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, in: Methods and Principles in Medicinal Chemistry, Vol.1, R. Manhold, P. Krogsgaard-Larsen, H. Timmermann (Eds.), VCH, Weinheim, 1993, pp. 21–36.
- 53 M. A. Johnson, G. M. Maggiora (Eds.), Concepts and Applications of Molecular Similarity, Wiley, New York, 1990.
- 54 P. M. Dean (Ed.), Molecular Similarity in Drug Design, Chapman & Hall, New York, 1995.
- 55 K. Sen (Ed.), Molecular Similarity I and II, Topics Curr. Chem. 1995, 173–174
- 56 J. M. Blaney, E. J. Martin, Computational approaches for combinatorial library design and molecular diversity analysis, Curr. Opin. Chem. Biol. 1997, 1, 54–59.
- 57 P. Willett, Similarity and Clustering in Chemical Information Systems, Research Studies Press, Letchworth, 1987.
- 58 R. D. Brown, Y. C. Martin, Use of Structure-Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection, J. Chem. Inf. Comput. Sci. 1996, 36, 572–584.
- 59 M. Karelson, V. S. Lobanov, A. R. Katritzky, Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chem. Rev. 1996, 96, 1027–1044.
- 60 P. E. Bowen-Jenkins, W. G. Richards, Quantitative Measures of Similarity between Pharmacologically Active Compounds, Int. J. Quantum Chem. 1986, 30, 763–768.
- 61 G. Boon, W. Langenaeker, F. De Proft, H. De Winter, J. P. Tollenaere, P. Geerlings, Systematic Study of the Quality of Various Quantum Similarity Descriptors. Use of the Autocorrelation Function and Principal Component Analysis, J. Phys. Chem. A 2001, 105, 8805–8814.
- 62
R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, 1990.
10.1093/oso/9780198551683.001.0001 Google Scholar
- 63 R. F. W. Bader, S. G. Anderson, A. J. Duke, Quantum Topology of Molecular Charge Distributions. 1, J. Am. Chem. Soc. 1979, 101, 1389–1395.
- 64
P. L. A. Popelier, Atoms in Molecules: an introduction, , (Ed.), London, 2000.
10.1039/9781847553317-00143 Google Scholar
- 65 P. L. A. Popelier, Quantum Molecular Similarity. 1. BCP Space, J. Phys. Chem. A 1999, 103, 2883–2890.
- 66 S. E. O'Brien, P. L. A. Popelier, Quantum molecular similarity. Part 2: The relation between properties in BCP space and bond length, Can. J. Chem. 1999, 77, 28–36.
- 67 S. E. O'Brien and P. L. A. Popelier, Quantum Molecular Similarity. 3. QTMS Descriptors, J. Chem. Inf. Comput. Sci. 2001, 41, 764–775.
- 68 P. L. A. Popelier, P. J. Smith, Quantum Topological Atoms, in Chemical Modelling: Applications and Theory, Vol. 2, A. Hinchliffe (Ed.), Royal Society of Chemistry Specialist, Periodical Report, 2002, pp. 391–448.
- 69 S. E. O'Brien, P. L. A. Popelier, Quantum Molecular Similarity. Part 4: Anti-Tumour Activity of Phenylbutenones, Perkin Trans. II 2002, 478–483.
- 70 P. L. A. Popelier, U. A. Chaudry, P. J. Smith, Quantum Topological Molecular Similarity. Part 5: Further Development with an Application to the toxicity of Polychlorinated dibenzo-p-dioxins (PCDDs), Perkin Trans.II 2002, 1231–1237.
- 71 C. B. Mazza, N. Sukumar, C. M. Breneman, S. M. Cramer, Prediction of Protein Retention in Ion-Exchange Systems Using Molecular Descriptors Obtained from Crystal Structure, Anal. Chem. 2001, 73, 5457–5461.
- 72 http://www.chem.rpi.edu/chemweb/recondoc/WinRecon.html
- 73 A. Hinchliffe (Ed.), Chemical Modelling: Applications and Theory, Vol. 1, Royal Society of Chemistry, Cambridge, 2000.
- 74 P. G. Mezey, Theorems on Molecular Shape-Similarity Descriptors: External T-Plasters and Interior T-Aggregates, J. Chem. Inf. Comput. Sci. 1996, 36, 1076–1081.
- 75 P. G. Mezey, Shape Analysis, in Encyclopedia of Computational Chemistry, Vol. 4, (Eds.), John Wiley & Sons, Chichester, UK, 1999, pp. 2582–2589.
- 76 P. G. Mezey, Shape in Chemistry: An Introduction to Molecular Shape and Topology, VCH Publishers, New York, 1993.
- 77 P. G. Mezey, The Shape of Molecular Charge Distributions: Group Theory without Symmetry, J. Comput. Chem. 1987, 8, 462–469.
- 78 P. D. Walker, G. A. Arteca, P. G. Mezey, A Complete Shape Group Characterization for Molecular Charge Densities Represented by Gaussian-Type Functions, J. Compur. Chem. 1990, 12, 220–230.
- 79 P. G. Mezey, Z. Zimpel, P. Warburton, P. D. Walker, D. G. Irvine, D. G. Dixon, B. Greenberg, High-Resolution Shape-Fragment MEDLA Database for Toxicological Shape Analysis of PAHs, J. Chem. Inf. Comput. Sci. 1996, 36, 602–611.
- 80 P. G. Mezey, Local and Global Similarities of Molecules: Electron Density Theorems, Computational Aspects, and Applications, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barcelona (11–14 September 2000).
- 81 G. A. Arteca, V. B. Jammal, P. G. Mezey, Shape Group Studies of Molecular Similarity and Regioselectivity in Chemical Reactions, J. Comput. Chem. 1988, 9, 608–619.
- 82 A. Lawson, Organic reaction similarity in information processing, J. Chem. Inf. Comput. Sci. 1992, 32, 675–679.
- 83 R. Ponec, M. Strnad, Similarity ideas in the theory of pericyclic reactivity, J. Chem. Inf. Comput. Sci. 1992, 32, 693–699.
- 84 G. Sello, Reaction prediction: the suggestions of the Beppe program, J. Chem. Inf. Comput. Sci. 1992, 32, 713–717.
- 85 J. Gasteiger, W. D. Ihlenfeldt, R. Fick, J. R. Rose, Similarity concepts for the planning of organic reactions and syntheses, J. Chem. Inf. Comput. Sci. 1992, 32, 700–712.
- 86 Y. C. Martin, Diverse Viewpoints on Computational Aspects of Molecular Diversity, J. Comb. Chem. 2001, 3, 231–250.
- 87 R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis, John Wiley, New York, 1973.
- 88
K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1990.
10.1016/B978-0-08-047865-4.50011-9 Google Scholar
- 89 S. Haykin, Neural networks. A comprehensive foundation, Macmillan/IEEE Press, 1994.
- 90 C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 1997, 23, 3–25.
- 91 D. K. Agrafiotis, V. Lobanov, F. Salemme, Combinatorial informatics in the post-genomic era, Nature Rev. 2002, www.nature.com/reviews/drugdisc
- 92 M. D. Barratt, J. V. Castell, M. Chamberlain, R. D. Combes, J. C. Dearden, J. H. Fentem, I. Gerner, A. Giuliani, T. J. B. Gray, D. J. Livingstone, W. McLean Provan, F. J. J. A. L. Rutten, H. J. M. Verhaar, P. Zbinden, The Integrated Use of Alternative Approaches for Predicting Toxic Hazard The Report and Recommendations of ECVAM Workshop 8, http://altweb.jhsph.edu/publications/ECVAM/ecvam08.htm
- 93 A. Burger, Isosterism and bioisosterism in drug design, Prog. Drug. Res. 1991, 37, 287–371.
- 94 G. A. Patani, E. J. LaVoie, Bioisosterism: A rational approach in drug design, Chem. Rev. 1996, 96, 3147–3176.
- 95 H. Kubinyi, Similarity and Dissimilarity – A Medicinal Chemist's View, in 3D QSAR in Drug Design. Volume II. Ligand-Protein Interactions and Molecular Similarity, H. Kubinyi, G. Folkers, Y. C. Martin (Eds.), Kluwer/ESCOM, Dordrecht, 1998, pp. 225–252; also published in: Persp. Drug Design Discov. 1998, 9/10/11, 225–252.
- 96 H. Kubinyi, Chemical Similarity and Biological Activity, 3rd Workshop on Chemical Structure and Biological Activity: Perspectives on QSAR 2001 (November 8–10, 2001) Sao Paolo, Brazil, http://arara.iq.usp.br/l6.htm
- 97 H. Kybinyi, Chemical Similarity and Biological activity. Hugo Kubinyi Lectures, http://home.t-online.de/home/kubinyi/dd-06.pdf
- 98 ICCA Workshop “(Q)SARS For Human Health And The Environment: Workshop on Regulatory Acceptance, Setubal, Portugal, March 4–6, 2002.
- 99 T. Potter, H. Matter, Random or Rational Design? Evaluation of Diverse Compound Subsets from Chemical Structure Databases, J. Med. Chem. 1998, 41, 478–488.
- 100 R. A. Lewis, J. S. Mason, I. M. McLay, Similarity Measures for Rational Set Selection and Analysis of Combinatorial Libraries: The Diverse Property-Derived (DPD) Approach, J. Chem. Inf. Comput. Sci. 1997, 37, 599–614.
- 101 R. D. Brown, Y. C. Martin, The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding, J. Chem. Inf. Comput. Sci. 1997, 37, 1–9.
- 102 G. M. Downs, P. Willett, W. Fisanick, Similarity Searching and Clustering of Chemical Structure Databases using Molecular Property Data, J. Chem. Inf. Comput. Sci. 1994, 34, 1094–1102.
- 103 S. K. Kearsley, S. Sallamack, E. M. Fluder, J. D. Andose, R. T. Mosley, R. P. Sheridan, Chemical Similarity Using Physiochemical Property Descriptors, J. Chem. Inf. Comput. Sci. 1996, 36, 118–127.
- 104
M. Dash, H. Liu, Feature Selection for Classification, Intell. Data Anal. 1997, 1, 131–156.
10.3233/IDA-1997-1302 Google Scholar
- 105 M. Hall, Correlation-based feature selection of discrete and numeric class machine learning, in Proceedings of the International Conference on Machine Learning, Morgan Kaufmann Publishers, San Francisco, CA, 2000, pp. 359–366.
- 106
P. M. Narendra, K. Fukunaga, A branch and bound algorithm for feature selection. IEEE T. Comp. 1977, C-29, 917–922.
10.1109/TC.1977.1674939 Google Scholar
- 107 K. Kira, L. A. Rendell, The feature selection problem: Traditional methods and a new algorithm, in Proceedings of Ninth National Conference on Artificial Intelligence, 1992, pp. 129–134.
- 108 I. Kononenko, Estimating attributes: Analysis and extension of RELIEF, in Proceedings of European Conference on Machine Learning, Morgan Kaufmann, 1994, pp. 171–182.
- 109 R. Kohavi, D. Sommerfield, Feature subset selection using the wrapper method: Overfitting and dynamic search space topology, in Proceedings of First International Conference on Knowledge Discovery and Data Mining, Morgan Kaufmann, 1995, pp. 192–197.
- 110 R. J. Hilderman, H. J. Hamilton, Heuristic measures of interestingness, in J. Zytkov, J. Rauch (Eds.), Proceedings of the 3rd European Conference on the Principles of Data Mining and Knowledge Discovery (PKDD'99), 1999, pp. 232–241.
- 111 S. K. Lin, Molecular diversity assessment: logarithmic relations of information and species diversity and logarithmic relations of entropy and indistinguishability after rejection of Gibbs paradox of entropy mixing, Molecules 1996, 1, 57–67.
- 112 D. K. Agrafiotis, On the Use of Information Theory for Assessing Molecular Diversity, J. Chem. Inf. Comput. Sci. 1997, 37, 576–580.
- 113 R. D. Cramer, D. E. Patterson, R. D. Clark, F. Soltanashahi, M. Lawless, Virtual Compound Libraries: A New Approach to Decision Making in Molecular Discovery Research, J. Chem. Inf. Comput. Sci. 1998, 38, 1010–1023.
- 114 Y. C. Martin, R. D. Brown, M. G. Bures, Quantifying diversity, in: E. M. Gordon, J. F. Kerwin Jr. (Eds.), Combinatorial Chemistry and Molecular Diversity in Drug Discovery, Wiley, 1998, pp. 369–385.
- 115 D. E. Patterson, R. D. Cramer, A. M. Ferguson, R. D. Clark, Weinberger Neighborhood Behavior: A Useful Concept for Validation of “Molecular Diversity” Descriptors, J. Med. Chem. 1996, 39, 3049–3059.
- 116 R. D. Clark, R. D. Cramer, Taming the combinatorial centipede, CHEMTECH 1997, 27, 24–30.
- 117 W. M. Meylan, P. H. Howard, R. S. Boethling, D. Aronson, H. Printup, S. Gouchi, Improved Method for Estimating Bioconcentration / Bioaccumulation Factor from Octanol/Water Partition Coefficient, Environ. Toxicol. Chem. 1996, 18, 664–672.
- 118 M. Skvortsova, I. Baskin, Molecular Similarity. 1. Analytical Description of the Set of Graph Similarity Measures, J. Chem. Inf. Comput. Sci. 1998, 38, 785–790.