Phytochemicals targeting ferroptosis in cardiovascular diseases: Recent advances and therapeutic perspectives
Jianxia Wen
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Software, Writing - original draft
Search for more papers by this authorLu Li
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Investigation, Visualization
Search for more papers by this authorYi Yang
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Resources, Validation
Search for more papers by this authorDinglin Ou
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Methodology
Search for more papers by this authorJunjie Yang
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Formal analysis
Search for more papers by this authorJiachen Xie
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Data curation
Search for more papers by this authorCorresponding Author
Wenya Du
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Correspondence
Wenya Du, School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China.
Email: [email protected]
Yuling Tong, School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.
Email: [email protected]
Contribution: Supervision, Visualization
Search for more papers by this authorCorresponding Author
Yuling Tong
School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
Correspondence
Wenya Du, School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China.
Email: [email protected]
Yuling Tong, School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.
Email: [email protected]
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorJianxia Wen
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Software, Writing - original draft
Search for more papers by this authorLu Li
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Investigation, Visualization
Search for more papers by this authorYi Yang
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Resources, Validation
Search for more papers by this authorDinglin Ou
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Methodology
Search for more papers by this authorJunjie Yang
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Formal analysis
Search for more papers by this authorJiachen Xie
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Contribution: Data curation
Search for more papers by this authorCorresponding Author
Wenya Du
School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
Correspondence
Wenya Du, School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China.
Email: [email protected]
Yuling Tong, School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.
Email: [email protected]
Contribution: Supervision, Visualization
Search for more papers by this authorCorresponding Author
Yuling Tong
School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
Correspondence
Wenya Du, School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China.
Email: [email protected]
Yuling Tong, School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.
Email: [email protected]
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorAbstract
Ferroptosis is a form of iron-dependent regulatory cell death that is related to the pathogenesis and progression of various cardiovascular diseases, such as arrhythmia, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure. This makes it a promising therapeutic target for cardiovascular diseases. It is interesting that a significant number of cardiovascular disease treatment drugs derived from phytochemicals have been shown to target ferroptosis, thus producing cardioprotective effects. This study offers a concise overview of the initiation and control mechanisms of ferroptosis. It discusses the core regulatory factors of ferroptosis as potential new therapeutic targets for various cardiovascular diseases, elucidating how ferroptosis influences the progression of cardiovascular diseases. In addition, this review systematically summarizes the regulatory effects of phytochemicals on ferroptosis, emphasizing their potential mechanisms and clinical applications in treating cardiovascular diseases. This study provides a reference for further elucidating the molecular mechanisms of phytochemicals in treating cardiovascular diseases. This may accelerate their application in the treatment of cardiovascular diseases and is worth further research in this field.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Bao, W. D., Pang, P., Zhou, X. T., Hu, F., Xiong, W., Chen, K., Wang, J., Wang, F., Xie, D., Hu, Y. Z., Han, Z. T., Zhang, H. H., Wang, W. X., Nelson, P. T., Chen, J. G., Lu, Y., Man, H. Y., Liu, D., & Zhu, L. Q. (2021). Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death and Differentiation, 28, 1548–1562. https://doi.org/10.1038/s41418-020-00685-9
- Bao, X. Y., Deng, L. H., Huang, Z. J., Daror, A. S., Wang, Z. H., Jin, W. J., Zhuang, Z., Tong, Q., Zheng, G. Q., & Wang, Y. (2021). Buyang Huanwu decoction enhances revascularization via Akt/GSK3beta/NRF2 pathway in diabetic hindlimb ischemia. Oxidative Medicine and Cellular Longevity, 2021, 1470829. https://doi.org/10.1155/2021/1470829
- Bian, J., Ding, Y., Wang, S., Jiang, Y., Wang, M., Wei, K., Si, L., Zhao, X., & Shao, Y. (2023). Celastrol confers ferroptosis resistance via AKT/GSK3beta signaling in high-fat diet-induced cardiac injury. Free Radical Biology & Medicine, 200, 36–46. https://doi.org/10.1016/j.freeradbiomed.2023.03.004
- Cai, W., Liu, L., Shi, X., Liu, Y., Wang, J., Fang, X., Chen, Z., Ai, D., Zhu, Y., & Zhang, X. (2023). Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation, 147, 1444–1460. https://doi.org/10.1161/CIRCULATIONAHA.122.060257
- Chen, L., Sun, X., Wang, Z., Chen, M., He, Y., Zhang, H., Han, D., & Zheng, L. (2024). Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicology and Applied Pharmacology, 482, 116794. https://doi.org/10.1016/j.taap.2023.116794
- Chen, R., Sun, G., Xu, L., Zhang, X., Zeng, W., & Sun, X. (2022). Didymin attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress. Chinese Herbal Medicines, 14, 70–78. https://doi.org/10.1016/j.chmed.2021.07.002
- Chen, Z., Li, J., Peng, H., Zhang, M., Wu, X., Gui, F., Li, W., Ai, F., Yu, B., & Liu, Y. (2023). Meteorin-like/Meteorin-beta protects LPS-induced acute lung injury by activating SIRT1-P53-SLC7A11 mediated ferroptosis pathway. Molecular Medicine, 29, 144. https://doi.org/10.1186/s10020-023-00714-6
- Cole, J. B., & Florez, J. C. (2020). Genetics of diabetes mellitus and diabetes complications. Nature Reviews. Nephrology, 16, 377–390. https://doi.org/10.1038/s41581-020-0278-5
- Conrad, M., & Pratt, D. A. (2019). The chemical basis of ferroptosis. Nature Chemical Biology, 15, 1137–1147. https://doi.org/10.1038/s41589-019-0408-1
- Dang, R., Wang, M., Li, X., Wang, H., Liu, L., Wu, Q., Zhao, J., Ji, P., Zhong, L., Licinio, J., & Xie, P. (2022). Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. Journal of Neuroinflammation, 19, 41. https://doi.org/10.1186/s12974-022-02400-6
- David, S., Ryan, F., Jhelum, P., & Kroner, A. (2023). Ferroptosis in neurological disease. The Neuroscientist, 29, 591–615. https://doi.org/10.1177/10738584221100183
- Dixon, S., Lemberg, K., Lamprecht, M., Skouta, R., Zaitsev, E., Gleason, C., … Stockwell, B. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149, 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
- Fan, X., Lv, H., Wang, L., Deng, X., & Ci, X. (2018). Isoorientin ameliorates APAP-induced hepatotoxicity via activation Nrf2 antioxidative pathway: The involvement of AMPK/Akt/GSK3beta. Frontiers in Pharmacology, 9, 1334. https://doi.org/10.3389/fphar.2018.01334
- Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H. T., Linkermann, A., Gu, W., Min, J., & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672–2680. https://doi.org/10.1073/pnas.1821022116
- Friedmann Angeli, J. P., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurin, V. A., Hammond, V. J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., Basavarajappa, D., Rådmark, O., Kobayashi, S., Seibt, T., Beck, H., Neff, F., Esposito, I., Wanke, R., Förster, H., … Conrad, M. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 16, 1180–1191. https://doi.org/10.1038/ncb3064
- Fu, C., Wu, Y., Liu, S., Luo, C., Lu, Y., Liu, M., Wang, L., Zhang, Y., & Liu, X. (2022). Rehmannioside a improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. Journal of Ethnopharmacology, 289, 115021. https://doi.org/10.1016/j.jep.2022.115021
- Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular Cell, 59, 298–308. https://doi.org/10.1016/j.molcel.2015.06.011
- He, Y., Xi, J., Fang, J., Zhang, B., & Cai, W. (2023). Aloe-emodin alleviates doxorubicin-induced cardiotoxicity via inhibition of ferroptosis. Free Radical Biology & Medicine, 206, 13–21. https://doi.org/10.1016/j.freeradbiomed.2023.06.025
- Hsieh, P. L., Tsai, K. L., Chou, W. C., Wu, C. H., Jou, I. M., Tu, Y. K., & Ma, C. H. (2023). Cisplatin triggers oxidative stress, apoptosis and pro-inflammatory responses by inhibiting the SIRT1-mediated Nrf2 pathway in chondrocytes. Environmental Toxicology, 38, 2476–2486. https://doi.org/10.1002/tox.23885
- Hu, S., Zhou, J., Hao, J., Zhong, Z., Wu, H., Zhang, P., Yang, J., Guo, H., & Chi, J. (2024). Emodin ameliorates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis through the remodeling of gut microbiota composition. American Journal of Physiology. Cell Physiology, 326, C161–C176. https://doi.org/10.1152/ajpcell.00477.2023
- Hu, T., Zou, H. X., Le, S. Y., Wang, Y. R., Qiao, Y. M., Yuan, Y., … Huang, H. (2023). Tanshinone IIA confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis and apoptosis via VDAC1. International Journal of Molecular Medicine, 52, 109. https://doi.org/10.3892/ijmm.2023.5312
- Huang, B., Liu, J., Meng, T., Li, Y., He, D., Ran, X., Chen, G., Guo, W., Kan, X., Fu, S., Wang, W., & Liu, D. (2018). Polydatin prevents lipopolysaccharide (LPS)-induced Parkinson's disease via regulation of the AKT/GSK3beta-Nrf2/NF-kappaB signaling Axis. Frontiers in Immunology, 9, 2527. https://doi.org/10.3389/fimmu.2018.02527
- Huang, F., Yang, R., Xiao, Z., Xie, Y., Lin, X., Zhu, P., Zhou, P., Lu, J., & Zheng, S. (2021). Targeting ferroptosis to treat cardiovascular diseases: A new continent to Be explored. Frontiers in Cell and Development Biology, 9, 737971. https://doi.org/10.3389/fcell.2021.737971
- Huang, L., Wang, X., Hu, B., & Rong, S. (2024). Expression levels and clinical significance of ferroptosis-related genes in patients with myocardial infarction. Scientific Reports, 14, 1870. https://doi.org/10.1038/s41598-023-49336-2
- Iqbal, S., Jabeen, F., Kahwa, I., & Omara, T. (2023). Suberosin alleviates thiazolidinedione-induced cardiomyopathy in diabetic rats by inhibiting ferroptosis via modulation of ACSL4-LPCAT3 and PI3K-AKT signaling pathways. Cardiovascular Toxicology, 23, 295–304. https://doi.org/10.1007/s12012-023-09804-7
- Jin, S., Wang, H., Zhang, X., Song, M., Liu, B., & Sun, W. (2024). Emerging regulatory mechanisms in cardiovascular disease: Ferroptosis. Biomedicine & Pharmacotherapy, 174, 116457. https://doi.org/10.1016/j.biopha.2024.116457
- Kar, F., Yildiz, F., Hacioglu, C., Kar, E., Donmez, D. B., Senturk, H., & Kanbak, G. (2023). LoxBlock-1 or curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling. Tissue & Cell, 82, 102114. https://doi.org/10.1016/j.tice.2023.102114
- Katz, D. H., Burns, J. A., Aguilar, F. G., Beussink, L., & Shah, S. J. (2014). Albuminuria is independently associated with cardiac remodeling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. JACC Heart Failure, 2, 586–596. https://doi.org/10.1016/j.jchf.2014.05.016
- Khaltaev, N., & Axelrod, S. (2022). Countrywide cardiovascular disease prevention and control in 49 countries with different socio-economic status. Chronic Diseases and Translational Medicine, 8, 296–304. https://doi.org/10.1002/cdt3.34
- Kong, C., Ni, X., Wang, Y., Zhang, A., Zhang, Y., Lin, F., Li, S., Lv, Y., Zhu, J., Yao, X., Dai, Q., Mo, Y., & Wang, J. (2022). ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Discovery, 8, 187. https://doi.org/10.1038/s41420-022-00957-y
- Lee, H., Zandkarimi, F., Zhang, Y., Meena, J., Kim, J., Zhuang, L., … Gan, B. (2020). Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology, 22, 225–234. https://doi.org/10.1038/s41556-020-0461-8
- Li, N., Jiang, W., Wang, W., Xiong, R., Wu, X., & Geng, Q. (2021). Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacological Research, 166, 105466. https://doi.org/10.1016/j.phrs.2021.105466
- Li, N., Wang, W., Zhou, H., Wu, Q., Duan, M., Liu, C., Wu, H., Deng, W., Shen, D., & Tang, Q. (2020). Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radical Biology & Medicine, 160, 303–318. https://doi.org/10.1016/j.freeradbiomed.2020.08.009
- Li, P., Dong, X. R., Zhang, B., Zhang, X. T., Liu, J. Z., Ma, D. S., & Ma, L. (2021). Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chinese Medical Journal, 134, 2647–2655. https://doi.org/10.1097/CM9.0000000000001772
- Li, S., Lei, Z., Yang, X., Zhao, M., Hou, Y., Wang, D., Tang, S., Li, J., & Yu, J. (2022). Propofol protects myocardium from ischemia/reperfusion injury by inhibiting ferroptosis through the AKT/p53 signaling pathway. Frontiers in Pharmacology, 13, 841410. https://doi.org/10.3389/fphar.2022.841410
- Lin, J. H., Yang, K. T., Ting, P. C., Lee, W. S., Lin, D. J., & Chang, J. C. (2023). Licochalcone a improves cardiac functions after ischemia-reperfusion via reduction of ferroptosis in rats. European Journal of Pharmacology, 957, 176031. https://doi.org/10.1016/j.ejphar.2023.176031
- Lin, J. H., Yang, K. T., Ting, P. C., Luo, Y. P., Lin, D. J., Wang, Y. S., & Chang, J. C. (2021). Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules, 11, 1667. https://doi.org/10.3390/biom11111667
- Lin, X., Zhao, X., Chen, Q., Wang, X., Wu, Y., & Zhao, H. (2023). Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis-induced cardiomyopathy. International Journal of Molecular Medicine, 52, 116. https://doi.org/10.3892/ijmm.2023.5319
- Liu, B., Zhao, C., Li, H., Chen, X., Ding, Y., & Xu, S. (2018). Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochemical and Biophysical Research Communications, 497, 233–240. https://doi.org/10.1016/j.bbrc.2018.02.061
- Liu, C., Yi, X., Yan, J., Liu, Q., Cao, T., & Liu, S. (2023). Paeonol improves angiotensin II-induced cardiac hypertrophy by suppressing ferroptosis. Heliyon, 9, e19149. https://doi.org/10.1016/j.heliyon.2023.e19149
- Liu, Q., Sun, L., Tan, Y., Wang, G., Lin, X., & Cai, L. (2009). Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Current Medicinal Chemistry, 16, 113–129. https://doi.org/10.2174/092986709787002862
- Liu, X., Li, D., Pi, W., Wang, B., Xu, S., Yu, L., Yao, L., Sun, Z., Jiang, J., & Mi, Y. (2022). LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. International Immunopharmacology, 113, 109379. https://doi.org/10.1016/j.intimp.2022.109379
- Liu, X., Qi, K., Gong, Y., Long, X., Zhu, S., Lu, F., Lin, K., & Xu, J. (2021). Ferulic acid alleviates myocardial ischemia reperfusion injury via upregulating AMPKalpha2 expression-mediated ferroptosis depression. Journal of Cardiovascular Pharmacology, 79, 489–500. https://doi.org/10.1097/FJC.0000000000001199
- Liu, X. J., Lv, Y. F., Cui, W. Z., Li, Y., Liu, Y., Xue, Y. T., & Dong, F. (2021). Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio, 11, 2966–2976. https://doi.org/10.1002/2211-5463.13276
- Luo, L. F., Guan, P., Qin, L. Y., Wang, J. X., Wang, N., & Ji, E. S. (2021). Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling. Molecular and Cellular Biochemistry, 476, 2603–2611. https://doi.org/10.1007/s11010-021-04112-6
- Lv, Q., Lin, J., Huang, H., Ma, B., Li, W., Chen, J., … Xiao, Y. (2024). Nanosponge for iron chelation and efflux: A ferroptosis-inhibiting approach for myocardial infarction therapy. Advanced Science, e2305895. https://doi.org/10.1002/advs.202305895
- Ma, T. L., Chen, J. X., Zhu, P., Zhang, C. B., Zhou, Y., & Duan, J. X. (2022). Focus on ferroptosis regulation: Exploring novel mechanisms and applications of ferroptosis regulator. Life Sciences, 307, 120868. https://doi.org/10.1016/j.lfs.2022.120868
- Mao, M., Zheng, W., Deng, B., Wang, Y., Zhou, D., Shen, L., Niku, W., & Zhang, N. (2023). Cinnamaldehyde alleviates doxorubicin-induced cardiotoxicity by decreasing oxidative stress and ferroptosis in cardiomyocytes. PLoS One, 18, e0292124. https://doi.org/10.1371/journal.pone.0292124
- Martin, S., Aday, A., Almarzooq, Z., Anderson, C., Arora, P., Avery, C., … Stroke Statistics Subcommittee. (2024). 2024 heart disease and stroke statistics: A report of US and global data from the American Heart Association. Circulation, 149, e347–e913. https://doi.org/10.1161/CIR.0000000000001209
- Okon, E., Kukula-Koch, W., Halasa, M., Jarzab, A., Baran, M., Dmoszynska-Graniczka, M., Angelis, A., Kalpoutzakis, E., Guz, M., Stepulak, A., & Wawruszak, A. (2020). Magnoflorine-isolation and the anticancer potential against NCI-H1299 lung, MDA-MB-468 breast, T98G glioma, and TE671 rhabdomyosarcoma cancer cells. Biomolecules, 10, 1532. https://doi.org/10.3390/biom10111532
- Patel, C., & Deoghare, S. (2015). Heart failure: Novel therapeutic approaches. Journal of Postgraduate Medicine, 61, 101–108. https://doi.org/10.4103/0022-3859.153104
- Port, J., Muthalagu, N., Raja, M., Ceteci, F., Monteverde, T., Kruspig, B., Hedley, A., Kalna, G., Lilla, S., Neilson, L., Brucoli, M., Gyuraszova, K., Tait-Mulder, J., Mezna, M., Svambaryte, S., Bryson, A., Sumpton, D., McVie, A., Nixon, C., … Murphy, D. J. (2018). Colorectal tumors require NUAK1 for protection from oxidative stress. Cancer Discovery, 8, 632–647. https://doi.org/10.1158/2159-8290.CD-17-0533
- Qin, W., Guo, J., Gou, W., Wu, S., Guo, N., Zhao, Y., & Hou, W. (2022). Molecular mechanisms of isoflavone puerarin against cardiovascular diseases: What we know and where we go. Chinese Herbal Medicines, 14, 234–243. https://doi.org/10.1016/j.chmed.2021.12.003
- Shen, L., Lei, S., Zhang, B., Li, S., Huang, L., Czachor, A., Breitzig, M., Gao, Y., Huang, M., Mo, X., Zheng, Q., Sun, H., & Wang, F. (2020). Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Theranostics, 10, 5719–5735. https://doi.org/10.7150/thno.42010
- Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. The New England Journal of Medicine, 339, 900–905. https://doi.org/10.1056/NEJM199809243391307
- Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., & Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315, 801–810. https://doi.org/10.1001/jama.2016.0287
- Sun, L., Wang, H., Xu, D., Yu, S., Zhang, L., & Li, X. (2022). Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered, 13, 48–60. https://doi.org/10.1080/21655979.2021.2004980
- Sun, Y., Zhou, S., Guo, H., Zhang, J., Ma, T., Zheng, Y., Zhang, Z., & Cai, L. (2020). Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism, 102, 154002. https://doi.org/10.1016/j.metabol.2019.154002
- Swaminathan, S., Fonseca, V. A., Alam, M. G., & Shah, S. V. (2007). The role of iron in diabetes and its complications. Diabetes Care, 30, 1926–1933. https://doi.org/10.2337/dc06-2625
- Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., Ishikita, A., Matsushima, S., Koumura, T., Yamada, K. I., Imai, H., & Tsutsui, H. (2020). Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight, 5, e132747. https://doi.org/10.1172/jci.insight.132747
- The, L. (2023). Diabetes: A defining disease of the 21st century. Lancet, 401, 2087. https://doi.org/10.1016/S0140-6736(23)01296-5
- Walley, K. R. (2018). Sepsis-induced myocardial dysfunction. Current Opinion in Critical Care, 24, 292–299. https://doi.org/10.1097/MCC.0000000000000507
- Wang, F., & Min, J. (2021). DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduction and Targeted Therapy, 6, 244. https://doi.org/10.1038/s41392-021-00656-7
- Wang, L., Li, P., Zhou, Y., Gu, R., Lu, G., & Zhang, C. (2023). Magnoflorine ameliorates collagen-induced arthritis by suppressing the inflammation response via the NF-kappaB/MAPK signaling pathways. Journal of Inflammation Research, 16, 2271–2296. https://doi.org/10.2147/JIR.S406298
- Wang, L., Liu, Y., Li, S., Zha, Z., Chen, Y., Wang, Q., Zhou, S., Huang, X., & Xu, M. (2023). Capsaicin alleviates doxorubicin-induced acute myocardial injury by regulating iron homeostasis and PI3K-Akt signaling pathway. Aging (Albany NY), 15, 11845–11859. https://doi.org/10.18632/aging.205138
- Wang, T. X., Duan, K. L., Huang, Z. X., Xue, Z. A., Liang, J. Y., Dang, Y., Zhang, A., Xiong, Y., Ding, C., Guan, K. L., & Yuan, H. X. (2023). Tanshinone functions as a coenzyme that confers gain of function of NQO1 to suppress ferroptosis. Life Science Alliance, 6, e202201667. https://doi.org/10.26508/lsa.202201667
- Wang, X., Chen, X., Zhou, W., Men, H., Bao, T., Sun, Y., Wang, Q., Tan, Y., Keller, B. B., Tong, Q., Zheng, Y., & Cai, L. (2022). Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharmaceutica Sinica B, 12, 708–722. https://doi.org/10.1016/j.apsb.2021.10.005
- Wang, X., Simayi, A., Fu, J., Zhao, X., & Xu, G. (2022). Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. American Journal of Physiology. Endocrinology and Metabolism, 323, E21–E32. https://doi.org/10.1152/ajpendo.00227.2021
- Wang, Z., Yao, M., Jiang, L., Wang, L., Yang, Y., Wang, Q., Qian, X., Zhao, Y., & Qian, J. (2022). Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3beta/Nrf2 axis. Biomedicine & Pharmacotherapy, 154, 113572. https://doi.org/10.1016/j.biopha.2022.113572
- White, D. L., & Collinson, A. (2013). Red meat, dietary heme iron, and risk of type 2 diabetes: The involvement of advanced lipoxidation endproducts. Advances in Nutrition, 4, 403–411. https://doi.org/10.3945/an.113.003681
- Wu, H., Zhang, P., Zhou, J., Hu, S., Hao, J., Zhong, Z., Yu, H., Yang, J., Chi, J., & Guo, H. (2024). Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. American Journal of Physiology. Cell Physiology, 326, C724–C741. https://doi.org/10.1152/ajpcell.00565.2023
- Wu, S., Zhu, J., Wu, G., Hu, Z., Ying, P., Bao, Z., Ding, Z., & Tan, X. (2022). 6-gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxidative Medicine and Cellular Longevity, 2022, 3027514. https://doi.org/10.1155/2022/3027514
- Wu, X., Li, Y., Zhang, S., & Zhou, X. (2021). Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 11, 3052–3059. https://doi.org/10.7150/thno.54113
- Wu, Y., He, T., Fu, Y., & Chen, J. (2021). Corynoline protects lipopolysaccharide-induced mastitis through regulating AKT/GSK3beta/Nrf2 signaling pathway. Environmental Toxicology, 36, 2493–2499. https://doi.org/10.1002/tox.23362
- Xiao, Y., Yu, Y., Hu, L., Yang, Y., Yuan, Y., Zhang, W., Luo, J., & Yu, L. (2023). Matrine alleviates sepsis-induced myocardial injury by inhibiting ferroptosis and apoptosis. Inflammation, 46, 1684–1696. https://doi.org/10.1007/s10753-023-01833-2
- Xin, Y., Bai, Y., Jiang, X., Zhou, S., Wang, Y., Wintergerst, K. A., Cui, T., Ji, H., Tan, Y., & Cai, L. (2018). Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ss/Fyn pathway. Redox Biology, 15, 405–417. https://doi.org/10.1016/j.redox.2017.12.016
- Xu, C., Wang, L., Fozouni, P., Evjen, G., Chandra, V., Jiang, J., Lu, C., Nicastri, M., Bretz, C., Winkler, J. D., Amaravadi, R., Garcia, B. A., Adams, P. D., Ott, M., Tong, W., Johansen, T., Dou, Z., & Berger, S. L. (2020). SIRT1 is downregulated by autophagy in senescence and ageing. Nature Cell Biology, 22, 1170–1179. https://doi.org/10.1038/s41556-020-00579-5
- Xu, S., He, Y., Lin, L., Chen, P., Chen, M., & Zhang, S. (2021). The emerging role of ferroptosis in intestinal disease. Cell Death & Disease, 12, 289. https://doi.org/10.1038/s41419-021-03559-1
- Xu, S., Wu, B., Zhong, B., Lin, L., Ding, Y., Jin, X., Huang, Z., Lin, M., Wu, H., & Xu, D. (2021). Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/system xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered, 12, 10924–10934. https://doi.org/10.1080/21655979.2021.1995994
- Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., Wolpaw, A. J., Smukste, I., Peltier, J. M., Boniface, J. J., Smith, R., Lessnick, S. L., Sahasrabudhe, S., & Stockwell, B. R. (2007). RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447, 864–868. https://doi.org/10.1038/nature05859
- Yan, X., Zhang, Y. L., Han, X., Li, P. B., Guo, S. B., & Li, H. H. (2022). Time series transcriptomic analysis by RNA sequencing reveals a key role of PI3K in sepsis-induced myocardial injury in mice. Frontiers in Physiology, 13, 903164. https://doi.org/10.3389/fphys.2022.903164
- Yang, K. T., Chao, T. H., Wang, I. C., Luo, Y. P., Ting, P. C., Lin, J. H., & Chang, J. C. (2022). Berberine protects cardiac cells against ferroptosis. Tzu Chi Medical Journal, 34, 310–317. https://doi.org/10.4103/tcmj.tcmj_236_21
- Yin, D., Yang, X., Li, H., Fan, H., Zhang, X., Feng, Y., Stuart, C., Hu, D., Caudle, Y., Xie, N., Liu, Z., & LeSage, G. (2016). Beta-Arrestin 2 promotes hepatocyte apoptosis by inhibiting Akt protein. The Journal of Biological Chemistry, 291, 605–612. https://doi.org/10.1074/jbc.M115.655829
- Zeng, Y., Cao, G., Lin, L., Zhang, Y., Luo, X., Ma, X., Aiyisake, A., & Cheng, Q. (2023). Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. Journal of Investigative Surgery, 36, 2157521. https://doi.org/10.1080/08941939.2022.2157521
- Zhang, H. L., Hu, B. X., Li, Z. L., Du, T., Shan, J. L., Ye, Z. P., … Zhu, X. F. (2022). PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nature Cell Biology, 24, 88–98. https://doi.org/10.1038/s41556-021-00818-3
- Zhang, Q., Qu, H., Chen, Y., Luo, X., Chen, C., Xiao, B., Ding, X., Zhao, P., Lu, Y., Chen, A. F., & Yu, Y. (2022). Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 Axis. Frontiers in Cell and Development Biology, 10, 806081. https://doi.org/10.3389/fcell.2022.806081
- Zhang, W., Qian, S., Tang, B., Kang, P., Zhang, H., & Shi, C. (2023). Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. Journal of Cellular and Molecular Medicine, 27, 3075–3089. https://doi.org/10.1111/jcmm.17874
- Zhao, X., Wang, X., & Pang, Y. (2022). Phytochemicals targeting ferroptosis: Therapeutic opportunities and prospects for treating breast cancer. Pharmaceuticals (Basel), 15, 1360. https://doi.org/10.3390/ph15111360
- Zhou, B., Zhang, J., Chen, Y., Liu, Y., Tang, X., Xia, P., Yu, P., & Yu, S. (2022). Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY), 14, 3617–3632. https://doi.org/10.18632/aging.204033
- Zhou, Q., Xie, M., Zhu, J., Yi, Q., Tan, B., Li, Y., Ye, L., Zhang, X., Zhang, Y., Tian, J., & Xu, H. (2021). PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca(2+) efflux. Stem Cell Research & Therapy, 12, 269. https://doi.org/10.1186/s13287-021-02325-6
- Zhou, X., Kang, J., Zhang, L., & Cheng, Y. (2023). Osthole inhibits malignant phenotypes and induces ferroptosis in KRAS-mutant colorectal cancer cells via suppressing AMPK/Akt signaling. Cancer Chemotherapy and Pharmacology, 92, 119–134. https://doi.org/10.1007/s00280-023-04549-0
- Zhu, H., Toan, S., Mui, D., & Zhou, H. (2021). Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiologica (Oxford, England), 231, e13590. https://doi.org/10.1111/apha.13590
- Zhu, M., Zhao, T., Zha, B., Zhang, G., Qian, W., Wang, X., Zhao, Q., Chen, S., Hu, Z., & Dong, L. (2024). Piceatannol protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis via Nrf-2 signaling-mediated iron metabolism. Biochemical and Biophysical Research Communications, 700, 149598. https://doi.org/10.1016/j.bbrc.2024.149598