Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies
Elena Azzini
Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
Contribution: Data curation, Investigation, Methodology, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorSheila I. Peña-Corona
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Contribution: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorHéctor Hernández-Parra
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorDeepak Chandran
Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorLejaniya Abdul Kalam Saleena
Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorYousef Sawikr
Department of Pharmacology and Toxicology, Faculty of Medicine University of Ajdabiya, Ajdabiya, Libya
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorIlaria Peluso
Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorSangram Dhumal
Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
Contribution: Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorManoj Kumar
Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
Contribution: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Gerardo Leyva-Gómez
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Data curation, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Miquel Martorell
Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Data curation, Investigation, Methodology, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Javad Sharifi-Rad
Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Daniela Calina
Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorElena Azzini
Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
Contribution: Data curation, Investigation, Methodology, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorSheila I. Peña-Corona
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Contribution: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorHéctor Hernández-Parra
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorDeepak Chandran
Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorLejaniya Abdul Kalam Saleena
Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorYousef Sawikr
Department of Pharmacology and Toxicology, Faculty of Medicine University of Ajdabiya, Ajdabiya, Libya
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorIlaria Peluso
Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
Contribution: Data curation, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorSangram Dhumal
Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
Contribution: Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorManoj Kumar
Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
Contribution: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Gerardo Leyva-Gómez
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Data curation, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Miquel Martorell
Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Data curation, Investigation, Methodology, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Javad Sharifi-Rad
Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Daniela Calina
Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
Correspondence
Gerardo Leyva-Gómez, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Email: [email protected]
Miquel Martorell, Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
Email: [email protected]
Javad Sharifi-Rad, Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
Email: [email protected]
Daniela Calina, Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Email: [email protected]
Contribution: Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.
CONFLICT OF INTEREST STATEMENT
The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.
Open Research
DATA AVAILABILITY STATEMENT
None.
REFERENCES
- Abdul Manap, A. S., Wei Tan, A. C., Leong, W. H., Yin Chia, A. Y., Vijayabalan, S., Arya, A., Wong, E. H., Rizwan, F., Bindal, U., Koshy, S., & Madhavan, P. (2019). Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via Computational Molecular Modeling and in vitro Assay. Frontiers in Aging Neuroscience, 11, 206. https://doi.org/10.3389/fnagi.2019.00206
- Abuelezz, N. Z., Nasr, F. E., AbdulKader, M. A., Bassiouny, A. R., & Zaky, A. (2021). MicroRNAs as potential orchestrators of Alzheimer's disease-related pathologies: Insights on current status and future possibilities. Frontiers in Aging Neuroscience, 13, 743573. https://doi.org/10.3389/fnagi.2021.743573
- Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: The Indian solid gold. Advances in Experimental Medicine and Biology, 595, 1–75. https://doi.org/10.1007/978-0-387-46401-5_1
- Agrawal, M., Saraf, S., Antimisiaris, S. G., Chougule, M. B., Shoyele, S. A., & Alexander, A. (2018). Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. Journal of Controlled Release, 281, 139–177. https://doi.org/10.1016/j.jconrel.2018.05.011
- Ahmad, N. (2017). Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of Parkinson's disease. Journal of Liquid Chromatography & Related Technologies, 40(13), 677–690. https://doi.org/10.1080/10826076.2017.1343735
- Ahmad, S., Khan, I., Pandit, J., Emad, N. A., Bano, S., Dar, K. I., Rizvi, M. M. A., Ansari, M. D., Aqil, M., & Sultana, Y. (2022). Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. International Journal of Biological Macromolecules, 221, 435–445. https://doi.org/10.1016/j.ijbiomac.2022.08.210
- Ahmed, T., & Gilani, A. H. (2009). Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer's disease. Pharmacology, Biochemistry, and Behavior, 91(4), 554–559. https://doi.org/10.1016/j.pbb.2008.09.010
- Akinyemi, A. J., Okonkwo, P. K., Faboya, O. A., Onikanni, S. A., Fadaka, A., Olayide, I., Akinyemi, E. O., & Oboh, G. (2017). Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model. Metabolic Brain Disease, 32(1), 87–95. https://doi.org/10.1007/s11011-016-9887-x
- Althobaiti, A. A., Ashour, E. A., Almutairi, M., Almotairy, A., Al Yahya, M., & Repka, M. A. (2022). Formulation development of curcumin-piperine solid dispersion via hot-melt extrusion. Journal of Drug Delivery Science and Technology, 76, 103753. https://doi.org/10.1016/j.jddst.2022.103753
- Andorfer, C., Acker, C. M., Kress, Y., Hof, P. R., Duff, K., & Davies, P. (2005). Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. The Journal of Neuroscience, 25(22), 5446–5454. https://doi.org/10.1523/JNEUROSCI.4637-04.2005
- Assefa, B. T., Tafere, G. G., Wondafrash, D. Z., & Gidey, M. T. (2020). The bewildering effect of AMPK activators in Alzheimer's disease: Review of the current evidence. BioMed Research International, 2020, 9895121. https://doi.org/10.1155/2020/9895121
- Ataie, A., Sabetkasaei, M., Haghparast, A., Moghaddam, A. H., Ataee, R., & Moghaddam, S. N. (2010). Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain. Journal of Medicinal Food, 13(4), 821–826. https://doi.org/10.1089/jmf.2009.1278
- Atamna, H., & Boyle, K. (2006). Amyloid-beta peptide binds with heme to form a peroxidase: Relationship to the cytopathologies of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3381–3386. https://doi.org/10.1073/pnas.0600134103
- Baazaoui, N., & Iqbal, K. (2022). Alzheimer's disease: Challenges and a therapeutic opportunity to treat it with a neurotrophic compound. Biomolecules, 12(10), 1409. https://doi.org/10.3390/biom12101409
- Baum, L., Lam, C. W., Cheung, S. K., Kwok, T., Lui, V., Tsoh, J., Lam, L., Leung, V., Hui, E., Ng, C., Woo, J., Chiu, H. F., Goggins, W. B., Zee, B. C., Cheng, K. F., Fong, C. Y., Wong, A., Mok, H., Chow, M. S., … Mok, V. (2008). Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. Journal of Clinical Psychopharmacology, 28(1), 110–113. https://doi.org/10.1097/jcp.0b013e318160862c
- Baum, L., & Ng, A. (2004). Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models. Journal of Alzheimer's Disease, 6(4), 367–377. https://doi.org/10.3233/jad-2004-6403
- Benameur, T., Giacomucci, G., Panaro, M. A., Ruggiero, M., Trotta, T., Monda, V., Pizzolorusso, I., Lofrumento, D. D., Porro, C., & Messina, G. (2021). New promising therapeutic avenues of curcumin in brain diseases. Molecules, 27(1), 236. https://doi.org/10.3390/molecules27010236
- Beshir, S. A., Aadithsoorya, A. M., Parveen, A., Goh, S. S. L., Hussain, N., & Menon, V. B. (2022). Aducanumab therapy to treat Alzheimer's disease: A narrative review. International Journal of Alzheimer's Disease, 2022, 9343514. https://doi.org/10.1155/2022/9343514
- Bhat, A., Mahalakshmi, A. M., Ray, B., Tuladhar, S., Hediyal, T. A., Manthiannem, E., Padamati, J., Chandra, R., Chidambaram, S. B., & Sakharkar, M. K. (2019). Benefits of curcumin in brain disorders. BioFactors, 45(5), 666–689. https://doi.org/10.1002/biof.1533
- Bianco, A., Antonacci, Y., & Liguori, M. (2023). Sex and gender differences in neurodegenerative diseases: Challenges for therapeutic opportunities. International Journal of Molecular Sciences, 24(7), 6354. https://doi.org/10.3390/ijms24076354
- Caccamo, A., Oddo, S., Tran, L. X., & LaFerla, F. M. (2007). Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. The American Journal of Pathology, 170(5), 1669–1675. https://doi.org/10.2353/ajpath.2007.061178
- Castillo-Ordoñez, W. O., Cajas-Salazar, N., & Velasco-Reyes, M. A. (2024). Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents. Neural Regeneration Research, 19(4), 846–854. https://doi.org/10.4103/1673-5374.382232
- Cenini, G., & Voos, W. (2019). Mitochondria as potential targets in Alzheimer disease therapy: An update. Frontiers in Pharmacology, 10, 902. https://doi.org/10.3389/fphar.2019.00902
- Chainoglou, E., & Hadjipavlou-Litina, D. (2020). Curcumin in health and diseases: Alzheimer's disease and curcumin analogues, derivatives, and hybrids. International Journal of Molecular Sciences, 21(6), 1975. https://doi.org/10.3390/ijms21061975
- Chen, Q., Ruan, D., Shi, J., Du, D., & Bian, C. (2023). The multifaceted roles of natural products in mitochondrial dysfunction. Frontiers in Pharmacology, 14, 1093038. https://doi.org/10.3389/fphar.2023.1093038
- Chen, Y., He, Y., Han, J., Wei, W., & Chen, F. (2023). Blood-brain barrier dysfunction and Alzheimer's disease: Associations, pathogenic mechanisms, and therapeutic potential. Frontiers in Aging Neuroscience, 15, 1258640. https://doi.org/10.3389/fnagi.2023.1258640
- Cheng, D., Li, W., Wang, L., Lin, T., Poiani, G., Wassef, A., Hudlikar, R., Ondar, P., Brunetti, L., & Kong, A. N. (2019). Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers. Molecular Pharmaceutics, 16(5), 1881–1889. https://doi.org/10.1021/acs.molpharmaceut.8b01246
- Chueh, S. C., Lai, M. K., Liu, I. S., Teng, F. C., & Chen, J. (2003). Curcumin enhances the immunosuppressive activity of cyclosporine in rat cardiac allografts and in mixed lymphocyte reactions. Transplantation Proceedings, 35(4), 1603–1605. https://doi.org/10.1016/s0041-1345(03)00377-4
- Chun, H., Im, H., Kang, Y. J., Kim, Y., Shin, J. H., Won, W., Lim, J., Ju, Y., Park, Y. M., Kim, S., Lee, S. E., Lee, J., Woo, J., Hwang, Y., Cho, H., Jo, S., Park, J. H., Kim, D., Kim, D. Y., … Lee, C. J. (2020). Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H(2)O(2) (-) production. Nature Neuroscience, 23(12), 1555–1566. https://doi.org/10.1038/s41593-020-00735-y
- Chun, H., & Lee, C. J. (2018). Reactive astrocytes in Alzheimer's disease: A double-edged sword. Neuroscience Research, 126, 44–52. https://doi.org/10.1016/j.neures.2017.11.012
- Cianciulli, A., Calvello, R., Ruggiero, M., & Panaro, M. A. (2022). Inflammaging and brain: Curcumin and its beneficial potential as regulator of microglia activation. Molecules, 27(2), 341. https://doi.org/10.3390/molecules27020341
- Cummings, J., Lee, G., Nahed, P., Kambar, M., Zhong, K., Fonseca, J., & Taghva, K. (2022). Alzheimer's disease drug development pipeline: 2022. Alzheimer's & Dementia, 8(1), e12295. https://doi.org/10.1002/trc2.12295
- Das, T. K., Chakrabarti, S. K., Zulkipli, I. N., & Abdul Hamid, M. R. W. (2019). Curcumin ameliorates the impaired insulin signaling involved in the pathogenesis of Alzheimer's disease in rats. Journal of Alzheimer's Disease Reports, 3(1), 59–70. https://doi.org/10.3233/adr-180091
- Davies, D. A., Adlimoghaddam, A., & Albensi, B. C. (2021). Role of Nrf2 in synaptic plasticity and memory in Alzheimer's disease. Cells, 10(8), 1884. https://doi.org/10.3390/cells10081884
- Davinelli, S., Sapere, N., Zella, D., Bracale, R., Intrieri, M., & Scapagnini, G. (2012). Pleiotropic protective effects of phytochemicals in Alzheimer's disease. Oxidative Medicine and Cellular Longevity, 2012, 386527. https://doi.org/10.1155/2012/386527
- de Gomes, M. G., Teixeira, F. E. G., de Carvalho, F. B., Pacheco, C. O., da Silva Neto, M. R., Giacomeli, R., Ramalho, J. B., Dos Santos, R. B., Domingues, W. B., Campos, V. F., & Haas, S. E. (2020). Curcumin-loaded lipid-core nanocapsules attenuates the immune challenge LPS-induced in rats: Neuroinflammatory and behavioral response in sickness behavior. Journal of Neuroimmunology, 345, 577270. https://doi.org/10.1016/j.jneuroim.2020.577270
- De Lorenzi, E., Franceschini, D., Contardi, C., Di Martino, R. M. C., Seghetti, F., Serra, M., Bisceglia, F., Pagetta, A., Zusso, M., & Belluti, F. (2022). Modulation of amyloid β-induced microglia activation and neuronal cell death by curcumin and analogues. International Journal of Molecular Sciences, 23(8), 4381. https://doi.org/10.3390/ijms23084381
- De Plano, L. M., Calabrese, G., Rizzo, M. G., Oddo, S., & Caccamo, A. (2023). The role of the transcription factor Nrf2 in Alzheimer's disease: Therapeutic opportunities. Biomolecules, 13(3), 549. https://doi.org/10.3390/biom13030549
- Deng, M., Yan, W., Gu, Z., Li, Y., Chen, L., & He, B. (2023). Anti-neuroinflammatory potential of natural products in the treatment of Alzheimer's disease. Molecules, 28(3), 1486.
- Doroszkiewicz, J., & Mroczko, B. (2022). New possibilities in the therapeutic approach to Alzheimer's disease. International Journal of Molecular Sciences, 23(16), 8902. https://doi.org/10.3390/ijms23168902
- DrugBank Online. (2023). Curcumin. Retrieved from https://go.drugbank.com/drugs/DB11672#
- Eghbaliferiz, S., Farhadi, F., Barreto, G. E., Majeed, M., & Sahebkar, A. (2020). Effects of curcumin on neurological diseases: Focus on astrocytes. Pharmacological Reports, 72(4), 769–782. https://doi.org/10.1007/s43440-020-00112-3
- Eun, C. S., Lim, J. S., Lee, J., Lee, S. P., & Yang, S. A. (2017). The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complementary and Alternative Medicine, 17(1), 367. https://doi.org/10.1186/s12906-017-1880-3
- Farooqui, A. A. (2014). Neurochemical aspects of oxidative and nitrosative stress. In A. A. Farooqui (Ed.), Inflammation and oxidative stress in neurological disorders: Effect of lifestyle, genes, and age (pp. 175–206). Springer International Publishing.
10.1007/978-3-319-04111-7_6 Google Scholar
- Fernández, A., Cuesta, P., Marcos, A., Montenegro-Peña, M., Yus, M., Rodríguez-Rojo, I. C., Bruña, R., Maestú, F., & López, M. E. (2024). Sex differences in the progression to Alzheimer's disease: A combination of functional and structural markers. Geroscience, 46(2), 2619–2640. https://doi.org/10.1007/s11357-023-01020-z
- Gao, C., Wang, Y., Sun, J., Han, Y., Gong, W., Li, Y., Feng, Y., Wang, H., Yang, M., Li, Z., Yang, Y., & Gao, C. (2020). Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomaterialia, 108, 285–299. https://doi.org/10.1016/j.actbio.2020.03.029
- Garcia-Alloza, M., Borrelli, L. A., Rozkalne, A., Hyman, B. T., & Bacskai, B. J. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104. https://doi.org/10.1111/j.1471-4159.2007.04613.x
- Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. The AAPS Journal, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8
- Han, Y., Chen, R., Lin, Q., Liu, Y., Ge, W., Cao, H., & Li, J. (2021). Curcumin improves memory deficits by inhibiting HMGB1-RAGE/TLR4-NF-κB signalling pathway in APPswe/PS1dE9 transgenic mice hippocampus. Journal of Cellular and Molecular Medicine, 25(18), 8947–8956. https://doi.org/10.1111/jcmm.16855
- Hao, M., Chu, Y., Lei, J., Yao, Z., Wang, P., Chen, Z., Wang, K., Sang, X., Han, X., Wang, L., & Cao, G. (2023). Pharmacological mechanisms and clinical applications of curcumin: Update. Aging and Disease, 14(3), 716–749. https://doi.org/10.14336/ad.2022.1101
- Hassan, F. U., Rehman, M. S., Khan, M. S., Ali, M. A., Javed, A., Nawaz, A., & Yang, C. (2019). Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Frontiers in Genetics, 10, 514. https://doi.org/10.3389/fgene.2019.00514
- Hassan, I. M., Wan Ibrahim, W. N., Yusuf, F. M., Ahmad, S. A., & Ahmad, S. (2021). Neuroprotective and antioxidant effect of Curcuma longa (Rhizome) methanolic extract on SH-SY5Y cells and Javanese medaka. Pakistan Journal of Pharmaceutical Sciences, 34(1), 47–56.
- He, P., Zhong, Z., Lindholm, K., Berning, L., Lee, W., Lemere, C., Staufenbiel, M., Li, R., & Shen, Y. (2007). Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer's mice. The Journal of Cell Biology, 178(5), 829–841. https://doi.org/10.1083/jcb.200705042
- He, W., Yuan, K., Ji, B., Han, Y., & Li, J. (2020). Protective effects of curcumin against neuroinflammation induced by Aβ25-35 in primary rat microglia: Modulation of high-mobility group box 1, toll-like receptor 4 and receptor for advanced glycation end products expression. Annals of Translational Medicine, 8(4), 88. https://doi.org/10.21037/atm.2019.12.147
- Hegde, M., Girisa, S., BharathwajChetty, B., Vishwa, R., & Kunnumakkara, A. B. (2023). Curcumin formulations for better bioavailability: What we learned from clinical trials thus far? ACS Omega, 8(12), 10713–10746. https://doi.org/10.1021/acsomega.2c07326
- Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
- Höglund, K., Wallin, A., & Blennow, K. (2006). Effect of statins on beta-amyloid metabolism in humans: Potential importance for the development of senile plaques in Alzheimer's disease. Acta Neurologica Scandinavica. Supplementum, 185, 87–92. https://doi.org/10.1111/j.1600-0404.2006.00691.x
- Howell, J. C., Chun, E., Farrell, A. N., Hur, E. Y., Caroti, C. M., Iuvone, P. M., & Haque, R. (2013). Global microRNA expression profiling: Curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Molecular Vision, 19, 544–560.
- Huang, L. K., Chao, S. P., & Hu, C. J. (2020). Clinical trials of new drugs for Alzheimer disease. Journal of Biomedical Science, 27(1), 18. https://doi.org/10.1186/s12929-019-0609-7
- Huang, M., Khor, E., & Lim, L. Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharmaceutical Research, 21(2), 344–353. https://doi.org/10.1023/b:pham.0000016249.52831.a5
- Im, K., Maliakel, A., Gopakumar, G., Kumar, D., Maliakel, B., & Kuttan, R. (2015). Improved blood–brain-barrier permeability and tissue distribution following the oral administration of a food-grade formulation of curcumin with fenugreek fibre. Journal of Functional Foods, 14, 215–225.
- Izzo, A. A., Hoon-Kim, S., Radhakrishnan, R., & Williamson, E. M. (2016). A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytotherapy Research, 30(5), 691–700. https://doi.org/10.1002/ptr.5591
- Jayaram, S., & Krishnamurthy, P. T. (2021). Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson's disease: The therapeutic role of Nrf2 activators. Neurochemistry International, 145, 105014. https://doi.org/10.1016/j.neuint.2021.105014
- Jeremic, D., Jiménez-Díaz, L., & Navarro-López, J. D. (2021). Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: A systematic review. Ageing Research Reviews, 72, 101496. https://doi.org/10.1016/j.arr.2021.101496
- Jo, S., Yarishkin, O., Hwang, Y. J., Chun, Y. E., Park, M., Woo, D. H., Bae, J. Y., Kim, T., Lee, J., Chun, H., Park, H. J., Lee, D. Y., Hong, J., Kim, H. Y., Oh, S. J., Park, S. J., Lee, H., Yoon, B. E., Kim, Y., … Lee, C. J. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nature Medicine, 20(8), 886–896. https://doi.org/10.1038/nm.3639
- Joe, B., Vijaykumar, M., & Lokesh, B. R. (2004). Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 44(2), 97–111. https://doi.org/10.1080/10408690490424702
- Kaur, S., Manhas, P., Swami, A., Bhandari, R., Sharma, K. K., Jain, R., Kumar, R., Pandey, S. K., Kuhad, A., Sharma, R. K., & Wangoo, N. (2018). Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chemical Engineering Journal, 346, 630–639. https://doi.org/10.1016/j.cej.2018.03.176
- Kimura, R., & Ohno, M. (2009). Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiology of Disease, 33(2), 229–235. https://doi.org/10.1016/j.nbd.2008.10.006
- Kip, E., & Parr-Brownlie, L. C. (2023). Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Frontiers in Neuroscience, 17, 1092537. https://doi.org/10.3389/fnins.2023.1092537
- Kou, J., Wang, M., Shi, J., Zhang, H., Pu, X., Song, S., Yang, C., Yan, Y., Döring, Y., Xie, X., & Pang, X. (2021). Curcumin reduces cognitive deficits by inhibiting neuroinflammation through the endoplasmic reticulum stress pathway in apolipoprotein E4 transgenic mice. ACS Omega, 6(10), 6654–6662. https://doi.org/10.1021/acsomega.0c04810
- Kuszewski, J. C., Wong, R. H. X., & Howe, P. R. C. (2018). Can curcumin counteract cognitive decline? Clinical trial evidence and rationale for combining ω-3 fatty acids with curcumin. Advances in Nutrition, 9(2), 105–113. https://doi.org/10.1093/advances/nmx013
- Lakey-Beitia, J., González, Y., Doens, D., Stephens, D. E., Santamaría, R., Murillo, E., Gutiérrez, M., Fernández, P. L., Rao, K. S., Larionov, O. V., & Durant-Archibold, A. A. (2017). Assessment of novel curcumin derivatives as potent inhibitors of inflammation and amyloid-β aggregation in Alzheimer's disease. Journal of Alzheimer's Disease, 60(s1), S59–S68. https://doi.org/10.3233/JAD-170071
- Lampe, V., & Milobedzka, J. (2006). Studien über Curcumin. Berichte der Deutschen Chemischen Gesellschaft, 46, 2235–2240. https://doi.org/10.1002/cber.191304602149
10.1002/cber.191304602149 Google Scholar
- Lee, E. H., Lim, S. S., Yuen, K. H., & Lee, C. Y. (2019). Curcumin and a hemi-analogue with improved blood-brain barrier permeability protect against amyloid-beta toxicity in Caenorhabditis elegans via SKN-1/Nrf activation. The Journal of Pharmacy and Pharmacology, 71(5), 860–868. https://doi.org/10.1111/jphp.13052
- Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nature Reviews Neurology, 17(3), 157–172. https://doi.org/10.1038/s41582-020-00435-y
- Li, Y., Xu, N. N., Hao, Z. Z., & Liu, S. (2023). Adult neurogenesis in the primate hippocampus. Zoological Research, 44(2), 315–322. https://doi.org/10.24272/j.issn.2095-8137.2022.399
- Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews. Neurology, 9(2), 106–118. https://doi.org/10.1038/nrneurol.2012.263
- Liu, Y. H., Lee, C. J., Chen, L. C., Lee, T. L., Hsieh, Y. Y., Han, C. H., Yang, C. H., Huang, W. J., & Hou, W. C. (2020). Acetylcholinesterase inhibitory activity and neuroprotection in vitro, molecular docking, and improved learning and memory functions of demethylcurcumin in scopolamine-induced amnesia ICR mice. Food & Function, 11(3), 2328–2338. https://doi.org/10.1039/c9fo02339a
- Lopresti, A. L. (2018). The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Advances in Nutrition, 9(1), 41–50. https://doi.org/10.1093/advances/nmx011
- Lv, H., Wang, Y., Yang, X., Ling, G., & Zhang, P. (2022). Application of curcumin nanoformulations in Alzheimer's disease: Prevention, diagnosis and treatment. Nutritional Neuroscience, 1-16, 727–742. https://doi.org/10.1080/1028415x.2022.2084550
10.1080/1028415x.2022.2084550 Google Scholar
- Ma, Q. L., Zuo, X., Yang, F., Ubeda, O. J., Gant, D. J., Alaverdyan, M., Teng, E., Hu, S., Chen, P. P., Maiti, P., Teter, B., Cole, G. M., & Frautschy, S. A. (2013). Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. The Journal of Biological Chemistry, 288(6), 4056–4065. https://doi.org/10.1074/jbc.M112.393751
- Mahase, E. (2021). Aducanumab: European agency rejects Alzheimer's drug over efficacy and safety concerns. BMJ, 375, n3127. https://doi.org/10.1136/bmj.n3127
- Mahdy, K., Gouda, N., El-Fattah, A., Yassin, N., El-Shenawy, S., Farrag, A. R., & Mm, B. (2014). Protective effect of ginger (Zingiber officinale) on Alzheimer's disease induced in rats. Journal of Neuroinfectious Diseases, 5, 159.
- Malampati, S., Song, J.-X., Chun-Kit Tong, B., Nalluri, A., Yang, C.-B., Wang, Z., Gopalkrishnashetty Sreenivasmurthy, S., Zhu, Z., Liu, J., Su, C., et al. (2020). Targeting Aggrephagy for the treatment of Alzheimer's disease. Cells, 9(2), 311. https://doi.org/10.3390/cells9020311
- Martin, T., Malagodi, A., Chi, E., & Evans, D. (2018). A computational study of the driving forces and dynamics of curcumin binding to amyloid-β protofibrils. The Journal of Physical Chemistry B, 123, 551–560. https://doi.org/10.1021/acs.jpcb.8b09185
- Mazanetz, M. P., & Fischer, P. M. (2007). Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Reviews. Drug Discovery, 6(6), 464–479. https://doi.org/10.1038/nrd2111
- Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology, 595, 105–125. https://doi.org/10.1007/978-0-387-46401-5_3
- Metzler, M., Pfeiffer, E., Schulz, S. I., & Dempe, J. S. (2013). Curcumin uptake and metabolism. BioFactors, 39(1), 14–20. https://doi.org/10.1002/biof.1042
- Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., & Niewiadomska, G. (2014). Tau protein modifications and interactions: Their role in function and dysfunction. International Journal of Molecular Sciences, 15(3), 4671–4713. https://doi.org/10.3390/ijms15034671
- Mishra, J., Bhatti, G. K., Sehrawat, A., Singh, C., Singh, A., Reddy, A. P., Reddy, P. H., & Bhatti, J. S. (2022). Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sciences, 311(Pt A), 121153. https://doi.org/10.1016/j.lfs.2022.121153
- Montegiove, N., Calzoni, E., Emiliani, C., & Cesaretti, A. (2022). Biopolymer nanoparticles for nose-to-brain drug delivery: A new promising approach for the treatment of neurological diseases. Journal of Functional Biomaterials, 13(3), 125. https://doi.org/10.3390/jfb13030125
- Morgia, G., Russo, G. I., Urzì, D., Privitera, S., Castelli, T., Favilla, V., & Cimino, S. (2017). A phase II, randomized, single-blinded, placebo-controlled clinical trial on the efficacy of Curcumina and Calendula suppositories for the treatment of patients with chronic prostatitis/chronic pelvic pain syndrome type III. Archivio Italiano di Urologia, Andrologia, 89(2), 110–113. https://doi.org/10.4081/aiua.2017.2.110
- Nam, M. H., Ko, H. Y., Kim, D., Lee, S., Park, Y. M., Hyeon, S. J., Won, W., Chung, J. I., Kim, S. Y., Jo, H. H., Oh, K. T., Han, Y. E., Lee, G. H., Ju, Y. H., Lee, H., Kim, H., Heo, J., Bhalla, M., Kim, K. J., … Lee, C. J. (2023). Visualizing reactive astrocyte-neuron interaction in Alzheimer's disease using 11C-acetate and 18F-FDG. Brain, 146(7), 2957–2974. https://doi.org/10.1093/brain/awad037
- Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E., & Schmidt, B. (2008). Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer's disease? ChemMedChem, 3(1), 165–172. https://doi.org/10.1002/cmdc.200700218
- Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry, 60(5), 1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975
- Nery-Flores, S. D., Mendoza-Magaña, M. L., Ramírez-Herrera, M. A., Ramírez-Vázquez, J. J., Romero-Prado, M. M. J., Cortez-Álvarez, C. R., & Ramírez-Mendoza, A. A. (2018). Curcumin exerted neuroprotection against ozone-induced oxidative damage and decreased NF-κB activation in rat hippocampus and serum levels of inflammatory cytokines. Oxidative Medicine and Cellular Longevity, 2018, 9620684. https://doi.org/10.1155/2018/9620684
- Noble, W., Planel, E., Zehr, C., Olm, V., Meyerson, J., Suleman, F., Gaynor, K., Wang, L., LaFrancois, J., Feinstein, B., Burns, M., Krishnamurthy, P., Wen, Y., Bhat, R., Lewis, J., Dickson, D., & Duff, K. (2005). Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6990–6995. https://doi.org/10.1073/pnas.0500466102
- Nussbaum, L., Hogea, L. M., Calina, D., Andreescu, N., Gradinaru, R., Stefanescu, R., & Puiu, M. (2017). Modern treatment approaches in psychoses. Pharmacogenetic, neuroimagistic and clinical implications. Farmácia, 65(1), 75–81.
- O'Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annual Review of Neuroscience, 34, 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613
- Olude, M. A., Mouihate, A., Mustapha, O. A., Farina, C., Quintana, F. J., & Olopade, J. O. (2022). Astrocytes and microglia in stress-induced neuroinflammation: The African perspective. Frontiers in Immunology, 13, 795089. https://doi.org/10.3389/fimmu.2022.795089
- Panaro, M. A., Corrado, A., Benameur, T., Paolo, C. F., Cici, D., & Porro, C. (2020). The emerging role of curcumin in the modulation of TLR-4 signaling pathway: Focus on neuroprotective and anti-rheumatic properties. International Journal of Molecular Sciences, 21(7), 2299. https://doi.org/10.3390/ijms21072299
- Parachikova, A., Green, K. N., Hendrix, C., & LaFerla, F. M. (2010). Formulation of a medical food cocktail for Alzheimer's disease: Beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One, 5(11), e14015. https://doi.org/10.1371/journal.pone.0014015
- Pardridge, W. M. (2020). Treatment of Alzheimer's disease and blood-brain barrier drug delivery. Pharmaceuticals, 13(11), 394. https://doi.org/10.3390/ph13110394
- Park, K. S., Seo, Y., Kim, M. K., Kim, K., Kim, Y. K., Choo, H., & Chong, Y. (2015). A curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer's disease. Organic & Biomolecular Chemistry, 13(46), 11194–11199. https://doi.org/10.1039/c5ob01847a
- Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Design, Development and Therapy, 15, 4503–4525. https://doi.org/10.2147/dddt.S327378
- Piccialli, I., Tedeschi, V., Caputo, L., D'Errico, S., Ciccone, R., De Feo, V., Secondo, A., & Pannaccione, A. (2022). Exploring the therapeutic potential of phytochemicals in Alzheimer's disease: Focus on polyphenols and monoterpenes. Frontiers in Pharmacology, 13, 876614. https://doi.org/10.3389/fphar.2022.876614
- Pontecorvo, M. J., Lu, M., Burnham, S. C., Schade, A. E., Dage, J. L., Shcherbinin, S., Collins, E. C., Sims, J. R., & Mintun, M. A. (2022). Association of donanemab treatment with exploratory plasma biomarkers in early symptomatic Alzheimer disease: A secondary analysis of the TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurology, 79(12), 1250–1259. https://doi.org/10.1001/jamaneurol.2022.3392
- Potter, P. E. (2019). Chapter 10—Curcumin offers potential efficacy for treating Alzheimer's disease. In T. Farooqui & A. A. Farooqui (Eds.), Curcumin for neurological and psychiatric disorders (pp. 191–209). Academic Press.
10.1016/B978-0-12-815461-8.00010-4 Google Scholar
- Priyadarsini, K. I. (2013). Chemical and structural features influencing the biological activity of curcumin. Current Pharmaceutical Design, 19(11), 2093–2100. https://doi.org/10.2174/138161213805289228
- Priyadarsini, K. I. (2014). The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 19(12), 20091–20112. https://doi.org/10.3390/molecules191220091
- Quispe, C., Herrera-Bravo, J., Javed, Z., Khan, K., Raza, S., Gulsunoglu-Konuskan, Z., Daştan, S. D., Sytar, O., Martorell, M., Sharifi-Rad, J., & Calina, D. (2022). Therapeutic applications of curcumin in diabetes: A review and perspective. BioMed Research International, 2022, 1375892. https://doi.org/10.1155/2022/1375892
- Rainey-Smith, S. R., Brown, B. M., Sohrabi, H. R., Shah, T., Goozee, K. G., Gupta, V. B., & Martins, R. N. (2016). Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. The British Journal of Nutrition, 115(12), 2106–2113. https://doi.org/10.1017/s0007114516001203
- Rane, J. S., Bhaumik, P., & Panda, D. (2017). Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. Journal of Alzheimer's Disease, 60(3), 999–1014. https://doi.org/10.3233/JAD-170351
- Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P., & Ferreira, A. (2002). Tau is essential to beta -amyloid-induced neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 64–69.
- Razavi, B. M., & Hosseinzadeh, H. (2020). Chapter 17—Antioxidant effects of Curcuma longa and its active constituent, curcumin, for the therapy of neurological disorders. In C. R. Martin & V. R. Preedy (Eds.), Oxidative stress and dietary antioxidants in neurological diseases (pp. 249–269). Academic Press.
10.1016/B978-0-12-817780-8.00017-7 Google Scholar
- Razick, D. I., Akhtar, M., Wen, J., Alam, M., Dean, N., Karabala, M., Ansari, U., Ansari, Z., Tabaie, E., & Siddiqui, S. (2023). The role of sirtuin 1 (SIRT1) in neurodegeneration. Cureus, 15(6), e40463. https://doi.org/10.7759/cureus.40463
- Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N., Bardens, J., Beigi, M., Gylys, K. H., Badmaev, V., Heath, D. D., Apostolova, L. G., Porter, V., Vanek, Z., Marshall, G. A., Hellemann, G., Sugar, C., Masterman, D. L., Montine, T. J., Cummings, J. L., & Cole, G. M. (2012). Oral curcumin for Alzheimer's disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer's Research & Therapy, 4(5), 43. https://doi.org/10.1186/alzrt146
- Sadek, M. A., Rabie, M. A., El Sayed, N. S., Sayed, H. M., & Kandil, E. A. (2023). Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: An insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology. https://doi.org/10.1007/s10787-023-01399-3
- Salem, H. F., Ali, A. A., Rabea, Y. K., Abo El-Ela, F. I., & Khallaf, R. A. (2023). Optimization and appraisal of chitosan-grafted PLGA nanoparticles for boosting pharmacokinetic and pharmacodynamic effect of duloxetine HCl using Box-Benkhen design. Journal of Pharmaceutical Sciences, 112(2), 544–561. https://doi.org/10.1016/j.xphs.2022.08.034
- Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., Forster, C., Yue, M., Orne, J., Janus, C., Mariash, A., Kuskowski, M., Hyman, B., Hutton, M., & Ashe, K. H. (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science, 309(5733), 476–481. https://doi.org/10.1126/science.1113694
- Schultz, B. G., Patten, D. K., & Berlau, D. J. (2018). The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Translational Neurodegeneration, 7, 5. https://doi.org/10.1186/s40035-018-0110-3
- Seady, M., Fróes, F. T., Gonçalves, C. A., & Leite, M. C. (2023). Curcumin modulates astrocyte function under basal and inflammatory conditions. Brain Research, 1818, 148519. https://doi.org/10.1016/j.brainres.2023.148519
- Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210
- Shahcheraghi, S. H., Salemi, F., Peirovi, N., Ayatollahi, J., Alam, W., Khan, H., & Saso, L. (2021). Nrf2 regulation by curcumin: Molecular aspects for therapeutic prospects. Molecules, 27(1), 167. https://doi.org/10.3390/molecules27010167
- Shao, S., Ye, X., Su, W., & Wang, Y. (2023). Curcumin alleviates Alzheimer's disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. Journal of Chemical Neuroanatomy, 134, 102363. https://doi.org/10.1016/j.jchemneu.2023.102363
- Sharifi-Rad, J., Almarhoon, Z. M., Adetunji, C. O., Samuel Michael, O., Chandran, D., Radha, R., Sharma, N., Kumar, M., & Calina, D. (2022). Neuroprotective effect of curcumin and curcumin-integrated nanocarriers in stroke: From mechanisms to therapeutic opportunities. Minerva Biotechnology and Biomolecular Research, 34(4), 153–169. https://doi.org/10.23736/s2724-542x.22.02946-7
10.23736/S2724-542X.22.02946-7 Google Scholar
- Sharifi-Rad, J., Menyiy, N. E., Ydyrys, A., Hachlafi, N. E., Omari, N. E., Aldahish, A. A., Sharopov, F., Bouyahya, A., Živković, J., Adetunji, C. O., Olaniyan, O. T., Martorell, M., Gürer, E. S., Hano, C., & Calina, D. (2023). Bioactive compounds from Prosopis species as potential oxidative stress and inflammation modulators: An update on mechanisms. Minerva Biotechnology and Biomolecular Research, 35(2), 127–144. https://doi.org/10.23736/s2724-542x.23.02977-2
10.23736/S2724-542X.23.02977-2 Google Scholar
- Sharifi-Rad, J., Rapposelli, S., Sestito, S., Herrera-Bravo, J., Arancibia-Diaz, A., Salazar, L. A., Yeskaliyeva, B., Beyatli, A., Leyva-Gómez, G., González-Contreras, C., Gürer, E. S., Martorell, M., & Calina, D. (2022). Multi-target mechanisms of phytochemicals in Alzheimer's disease: Effects on oxidative stress, neuroinflammation and protein aggregation. Journal of Personalized Medicine, 12(9), 1515.
- Sharma, C., & Kim, S. R. (2023). Oxidative stress: Culprit or consequence in Alzheimer's amyloidopathy. Neural Regeneration Research, 18(9), 1948–1949. https://doi.org/10.4103/1673-5374.367843
- Shehzad, A., & Lee, Y. S. (2010). Curcumin: Multiple molecular targets mediate multiple pharmacological actions: A review. Drugs of the Future, 35(2), 113. https://doi.org/10.1358/dof.2010.035.02.1426640
- Shehzad, A., Wahid, F., & Lee, Y. S. (2010). Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Archiv der Pharmazie, 343(9), 489–499. https://doi.org/10.1002/ardp.200900319
- Sidiropoulou, G. A., Metaxas, A., & Kourti, M. (2023). Natural antioxidants that act against Alzheimer's disease through modulation of the NRF2 pathway: A focus on their molecular mechanisms of action. Frontiers in Endocrinology, 14, 1217730. https://doi.org/10.3389/fendo.2023.1217730
- Silva-Abreu, M., Calpena, A. C., Andrés-Benito, P., Aso, E., Romero, I. A., Roig-Carles, D., Gromnicova, R., Espina, M., Ferrer, I., García, M. L., & Male, D. (2018). PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer's disease: In vitro and in vivo studies. International Journal of Nanomedicine, 13, 5577–5590. https://doi.org/10.2147/ijn.S171490
- Singh, D. (2022). Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. Journal of Neuroinflammation, 19(1), 206. https://doi.org/10.1186/s12974-022-02565-0
- Sotiropoulos, I., Catania, C., Riedemann, T., Fry, J. P., Breen, K. C., Michaelidis, T. M., & Almeida, O. F. (2008). Glucocorticoids trigger Alzheimer disease-like pathobiochemistry in rat neuronal cells expressing human tau. Journal of Neurochemistry, 107(2), 385–397. https://doi.org/10.1111/j.1471-4159.2008.05613.x
- Steiner, H., Fukumori, A., Tagami, S., & Okochi, M. (2018). Making the final cut: Pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress, 2(11), 292–310. https://doi.org/10.15698/cst2018.11.162
- Swardfager, W., Lanctôt, K., Rothenburg, L., Wong, A., Cappell, J., & Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer's disease. Biological Psychiatry, 68(10), 930–941. https://doi.org/10.1016/j.biopsych.2010.06.012
- Tan, H. Y., Wang, N., Li, S., Hong, M., Wang, X., & Feng, Y. (2016). The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxidative Medicine and Cellular Longevity, 2016, 2795090. https://doi.org/10.1155/2016/2795090
- Terry, A. V., & Buccafusco, J. J. (2003). The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: Recent challenges and their implications for novel drug development. The Journal of Pharmacology and Experimental Therapeutics, 306(3), 821–827. https://doi.org/10.1124/jpet.102.041616
- Teter, B., Morihara, T., Lim, G. P., Chu, T., Jones, M. R., Zuo, X., … Cole, G. M. (2019). Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiology of Disease, 127, 432–448. https://doi.org/10.1016/j.nbd.2019.02.015
- Ullah, F., Gamage, R., Sen, M. K., & Gyengesi, E. (2022). The effects of modified curcumin preparations on glial morphology in aging and neuroinflammation. Neurochemical Research, 47(4), 813–824. https://doi.org/10.1007/s11064-021-03499-4
- Ungurianu, A., Zanfirescu, A., & Margină, D. (2022). Regulation of gene expression through food-curcumin as a sirtuin activity modulator. Plants, 11(13), 1741. https://doi.org/10.3390/plants11131741
10.3390/plants11131741 Google Scholar
- Urano, Y., Takahachi, M., Higashiura, R., Fujiwara, H., Funamoto, S., Imai, S., Futai, E., Okuda, M., Sugimoto, H., & Noguchi, N. (2020). Curcumin derivative GT863 inhibits amyloid-beta production via inhibition of protein N-glycosylation. Cells, 9(2), 349. https://doi.org/10.3390/cells9020349
- Valles, S. L., Singh, S. K., Campos-Campos, J., Colmena, C., Campo-Palacio, I., Alvarez-Gamez, K., Caballero, O., & Jorda, A. (2023). Functions of astrocytes under normal conditions and after a brain disease. International Journal of Molecular Sciences, 24(9), 8434. https://doi.org/10.3390/ijms24098434
- Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology, Biomarkers & Prevention, 17(6), 1411–1417. https://doi.org/10.1158/1055-9965.EPI-07-2693
- von Bernhardi, R., Cornejo, F., Parada, G. E., & Eugenín, J. (2015). Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Frontiers in Cellular Neuroscience, 9, 426. https://doi.org/10.3389/fncel.2015.00426
- Wang, H., Sui, H., Zheng, Y., Jiang, Y., Shi, Y., Liang, J., & Zhao, L. (2019). Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale, 11(15), 7481–7496. https://doi.org/10.1039/c9nr01255a
- Wang, X., Kim, J. R., Lee, S. B., Kim, Y. J., Jung, M. Y., Kwon, H. W., & Ahn, Y. J. (2014). Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer's disease drosophila models. BMC Complementary and Alternative Medicine, 14, 88. https://doi.org/10.1186/1472-6882-14-88
- Wang, Y. (2023). An insider's perspective on FDA approval of aducanumab. Alzheimer's & Dementia, 9(2), e12382. https://doi.org/10.1002/trc2.12382
- Williamson, E. M., Liu, X., & Izzo, A. A. (2020). Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. British Journal of Pharmacology, 177(6), 1227–1240. https://doi.org/10.1111/bph.14943
- Yadav, V., Mythri, C., & Kumarasamy, M. (2024). Natural products as potential modulators of pro-inflammatory cytokines signalling in Alzheimer's disease. Brain Behavior and Immunity Integrative, 5, 100048. https://doi.org/10.1016/j.bbii.2024.100048
10.1016/j.bbii.2024.100048 Google Scholar
- Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618
- Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A., & Cole, G. M. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. The Journal of Biological Chemistry, 280(7), 5892–5901. https://doi.org/10.1074/jbc.M404751200
- Yiannopoulou, K. G., Anastasiou, A. I., Zachariou, V., & Pelidou, S. H. (2019). Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicine, 7(4), 97. https://doi.org/10.3390/biomedicines7040097
10.3390/biomedicines7040097 Google Scholar
- Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: An update. Journal of Central Nervous System Disease, 12, 1179573520907397. https://doi.org/10.1177/1179573520907397
- Zendedel, E., Butler, A. E., Atkin, S. L., & Sahebkar, A. (2018). Impact of curcumin on sirtuins: A review. Journal of Cellular Biochemistry, 119(12), 10291–10300. https://doi.org/10.1002/jcb.27371
- Zhang, C., Sui, X., Jiang, Y., Wang, X., & Wang, S. (2020). Antitumor effects of icaritin and the molecular mechanisms. Discovery Medicine, 29(156), 5–16.
- Zhou, X., Venigalla, M., Raju, R., & Münch, G. (2022). Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. Journal of Neural Transmission (Vienna), 129(5–6), 755–771. https://doi.org/10.1007/s00702-022-02480-x
- Zhu, X., Perry, G., Moreira, P. I., Aliev, G., Cash, A. D., Hirai, K., & Smith, M. A. (2006). Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. Journal of Alzheimer's Disease, 9(2), 147–153. https://doi.org/10.3233/jad-2006-9207