Thymol in Trachyspermum ammi seed extract exhibits neuroprotection, learning, and memory enhancement in scopolamine-induced Alzheimer's disease mouse model
Binod Timalsina
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Search for more papers by this authorMd Nazmul Haque
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
Search for more papers by this authorHo Jin Choi
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Search for more papers by this authorRaju Dash
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Search for more papers by this authorCorresponding Author
Il Soo Moon
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Correspondence
Il Soo Moon, Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea.
Email: [email protected]
Search for more papers by this authorBinod Timalsina
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Search for more papers by this authorMd Nazmul Haque
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
Search for more papers by this authorHo Jin Choi
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Search for more papers by this authorRaju Dash
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Search for more papers by this authorCorresponding Author
Il Soo Moon
Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
Correspondence
Il Soo Moon, Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea.
Email: [email protected]
Search for more papers by this authorAbstract
Several reports have stated the neuroprotective and learning/memory effects of Tachyspermum ammi seed extract (TASE) and its principal component thymol; however, little is known about its underlying molecular mechanisms and neurogenesis potential. This study aimed to provide insights into TASE and a thymol-mediated multifactorial therapeutic approach in a scopolamine-induced Alzheimer's disease (AD) mouse model. TASE and thymol supplementation significantly reduced oxidative stress markers such as brain glutathione, hydrogen peroxide, and malondialdehyde in mouse whole brain homogenates. Tumor necrosis factor-alpha was significantly downregulated, whereas the elevation of brain-derived neurotrophic factor and phospho-glycogen synthase kinase-3 beta (serine 9) enhanced learning and memory in the TASE- and thymol-treated groups. A significant reduction in the accumulation of Aβ 1–42 peptides was observed in the brains of TASE- and thymol-treated mice. Furthermore, TASE and thymol significantly promoted adult neurogenesis, with increased doublecortin positive neurons in the subgranular and polymorphic zones of the dentate gyrus in treated-mice. Collectively, TASE and thymol could potentially act as natural therapeutic agents for the treatment of neurodegenerative disorders, such as AD.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ptr7777-sup-0001-FigureS1.docxWord 2007 document , 316.3 KB | Figure S1: Quantification of oxidative stress markers in the brain lysate of treatment groups. (a) Total Glutathione; (b) Oxidized glutathione; (c) Free glutathione; (d) Peroxide; and (e) Lipid peroxidation (MDA level) in the normal and extract or compound treated groups. Data are represented as mean ± SD. Normal: vehicle; Stigmasterol: Stigmasterol 10 mg/kg; TASE 250: TASE 250 mg/kg; TASE 500: TASE 500 mg/kg; Thymol 50: Thymol 50 mg/kg; Thymol 100: Thymol 100 mg/kg. *p < 0.05, **p < 0.01, and ***p < 0.001 (one-way ANOVA with Dunnett's post hoc test) represent the difference between scopolamine-only and treatments groups. (n = 3 mouse brain lysate per group for each analysis). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alzheimer's association report. (2020). Alzheimer's disease facts and figures. Alzheimer's & Dementia, 16(3), 391–460. https://doi.org/10.1002/alz.12068
- Adachi, K., Mirzadeh, Z., Sakaguchi, M., Yamashita, T., Nikolcheva, T., Gotoh, Y., Peltz, G., Gong, L., Kawase, T., Alvarez-Buylla, A., Okano, H., & Sawamoto, K. (2007). β-Catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 25(11), 2827–2836.
- Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., & Finch, C.E. (2000). Inflammation and Alzheimer's disease. Neurobiology of Aging, 21(3), 383–421.
- Albeely, A. M., Ryan, S. D., & Perreault, M. L. (2018). Pathogenic feed-forward mechanisms in Alzheimer's and Parkinson's disease converge on GSK-3. Brain Plasticity, 4(2), 151–167. https://doi.org/10.3233/BPL-180078
- Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22. https://doi.org/10.1016/s0079-6123(07)63001-5
- Andersen, A. (2006). Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. International Journal of Toxicology, 25, 29–127.
- Anoush, M., Pourmansouri, Z., Javadi, R., GhorbanPour, B., Sharafi, A., Mohamadpour, H., Jafari anarkooli, I., & Andalib, S. (2022). Clavulanic acid: A novel potential agent in prevention and treatment of scopolamine-induced Alzheimer's disease. ACS Omega, 7(16), 13861–13869. https://doi.org/10.1021/acsomega.2c00231
- Arslan, J., Jamshed, H., & Qureshi, H. (2020). Early detection and prevention of Alzheimer's disease: Role of oxidative markers and natural antioxidants. Frontiers in Aging Neuroscience, 12, 231.
- Bhat, B. A., Almilaibary, A., Mir, R. A., Aljarallah, B. M., Mir, W. R., Ahmad, F., & Mir, M. A. (2022). Natural therapeutics in aid of treating Alzheimer's disease: A green gateway toward ending quest for treating neurological disorders. Frontiers in Neuroscience, 16, 884345.
- Bradley, J. R. (2008). The role of nuclear organization in cancer. The Journal of Pathology, 214, 149–160.
- Bubser, M., Byun, N., Wood, M. R., & Jones, C. K. (2012). Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Muscarinic Receptors, 208, 121–166.
- Casado, A., Encarnación López-Fernández, M., Concepción Casado, M., & de La Torre, R. (2008). Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochemical Research, 33(3), 450–458. https://doi.org/10.1007/s11064-007-9453-3
- Častorálová, M., Ruml, T., & Knejzlík, Z. (2012). Using dot blot with immunochemical detection to evaluate global changes in SUMO-2/3 conjugation. BioTechniques, 53(3), 1–4. https://doi.org/10.2144/000113925
- Chen, C., Li, X. H., Zhang, S., Tu, Y., Wang, Y. M., & Sun, H. T. (2014). 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Research, 17(3), 249–254. https://doi.org/10.1089/rej.2013.1519
- Chen, R., Lai, U. H., Zhu, L., Singh, A., Ahmed, M., & Forsyth, N. R. (2018). Reactive oxygen species formation in the brain at different oxygen levels: The role of hypoxia inducible factors. Frontiers in Cell and Developmental Biology, 6, 132.
- Choi, S. H., Bylykbashi, E., Chatila, Z. K., Lee, S. W., Pulli, B., Clemenson, G. D., Kim, E., Rompala, A., Oram, M. K., Asselin, C., Aronson, J., Zhang, C., Miller, S. J., Lesinski, A., Chen, J. W., Kim, D. Y., Praag, H. V., Spiegelman, B. M., Gage, F. H., & Tanzi, R. E. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science, 361(6406), eaan8821. https://doi.org/10.1126/science.aan8821
- Chunhui, H., Dilin, X., Ke, Z., Jieyi, S., Sicheng, Y., Dapeng, W., Qinwen, W., & Wei, C. (2018). A11-positive β-amyloid oligomer preparation and assessment using dot blotting analysis. Journal of Visualized Experiments, 135, e57592.
- Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., & Ashe, K. H. (2005). Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neuroscience, 8(1), 79–84.
- Cole, A. (2012). GSK3 as a sensor determining cell fate in the brain. Frontiers in Molecular Neuroscience, 5, 4.
- Colucci-D'Amato, L., Speranza, L., & Volpicelli, F. (2020). Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. International Journal of Molecular Sciences, 21(20), 7777.
- Deng, G., Wu, C., Rong, X., Li, S., Ju, Z., Wang, Y., Ma, C., Ding, W., Guan, H., Guan, H., Cheng, X., & Liu, W. (2019). Ameliorative effect of deoxyvasicine on scopolamine-induced cognitive dysfunction by restoration of cholinergic function in mice. Phytomedicine, 63, 153007.
- Deng, X.-Y., Li, H.-Y., Chen, J.-J., Li, R.-P., Qu, R., Fu, Q., & Ma, S.-P. (2015). Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice. Behavioural Brain Research, 291, 12–19. https://doi.org/10.1016/j.bbr.2015.04.052
- Dill, J., Wang, H., Zhou, F., & Li, S. (2008). Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. The Journal of Neuroscience, 28(36), 8914–8928. https://doi.org/10.1523/JNEUROSCI.1178-08.2008
- Dupret, D., Revest, J.-M., Koehl, M., Ichas, F., De Giorgi, F., Costet, P., Abrous, D.N., & Piazza, P. V. (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3(4), e1959.
- Duyckaerts, C., Delatour, B., & Potier, M.-C. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathologica, 118(1), 5–36.
- Figiel, I. (2008). Pro-inflammatory cytokine TNF-alpha as a neuroprotective agent in the brain. Acta Neurobiologiae Experimentalis (Wars), 68(4), 526–534.
- Gauthier, S., Rosa-Neto, P., Morais, J. A., & Webster, C. (2021). World Alzheimer Report 2021-Journey Through the Diagnosis of Dementia (p. 314). Alzheimer's Disease International.
- Gourmaud, S., Shou, H., Irwin, D. J., Sansalone, K., Jacobs, L. M., Lucas, T. H., Marsh, E. D., Davis, K.A., Jensen, F.E., & Talos, D. M. (2020). Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain, 143(1), 191–209.
- Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185.
- Harris, H. F. (1900). On the rapid conversion of haematoxylin into haematein in staining reactions. Journal of Applied Microscopic Laboratory Methods, 3(3), 777.
- Harris, L., Rigo, P., Stiehl, T., Gaber, Z. B., Austin, S. H. L., del Mar Masdeu, M., Edwards, A., Urban, N., Marciniak-Czochra, A., & Guillemot, F. (2021). Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell, 28(5), 863–876.
- Hernández-Mercado, K., & Zepeda, A. (2022). Morris water Maze and contextual fear conditioning tasks to evaluate cognitive functions associated with adult hippocampal neurogenesis. Frontiers in Neuroscience, 15, 1745.
- Hock, C., Heese, K., Hulette, C., Rosenberg, C., & Otten, U. (2000). Region-specific neurotrophin imbalances in Alzheimer disease: Decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Archives of Neurology, 57(6), 846–851.
- Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jenssen, F., Karlawish, J., & Liu, E. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535–562.
- Jin, Y., Sun, L. H., Yang, W., Cui, R. J., & Xu, S. B. (2019). The role of BDNF in the neuroimmune Axis regulation of mood disorders. Frontiers in Neurology, 10, 515.
- Kisoh, K., Hayashi, H., Itoh, T., Asada, M., Arai, M., Yuan, B., Tanonaka, K., & Takagi, N. (2017). Involvement of GSK-3β phosphorylation through PI3-K/Akt in cerebral ischemia-induced neurogenesis in rats. Molecular Neurobiology, 54(10), 7917–7927. https://doi.org/10.1007/s12035-016-0290-8
- Komulainen, P., Pedersen, M., Hänninen, T., Bruunsgaard, H., Lakka, T. A., Kivipelto, M., Hassinen, M., Rauramaa, T. H., Pedersen, B. K., & Rauramaa, R. (2008). BDNF is a novel marker of cognitive function in ageing women: The DR's EXTRA study. Neurobiology of Learning and Memory, 90(4), 596–603.
- Laske, C., Stellos, K., Hoffmann, N., Stransky, E., Straten, G., Eschweiler, G. W., & Leyhe, T. (2011). Higher BDNF serum levels predict slower cognitive decline in Alzheimer's disease patients. International Journal of Neuropsychopharmacology, 14(3), 399–404.
- Lee, G.-Y., Lee, C., Park, G. H., & Jang, J.-H. (2017). Amelioration of scopolamine-induced learning and memory impairment by α-pinene in C57BL/6 mice. Evidence-Based Complementary and Alternative Medicine, 2017, 4926815. https://doi.org/10.1155/2017/4926815
- Lévy, E., El Banna, N., Baïlle, D., Heneman-Masurel, A., Truchet, S., Rezaei, H., Huang, M. E., Beringue,, V., Martin, D., & Vernis, L. (2019). Causative links between protein aggregation and oxidative stress: A review. International Journal of Molecular Sciences, 20(16), 3896.
- Li, X., Bao, X., & Wang, R. (2016). Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening. International Journal of Molecular Medicine, 37(2), 271–283.
- Li, X., & Jope, R. S. (2010). Is glycogen synthase kinase-3 a central modulator in mood regulation? Neuropsychopharmacology, 35(11), 2143–2154. https://doi.org/10.1038/npp.2010.105
- Liu, B., Li, L.-L., Tan, X.-D., Zhang, Y.-H., Jiang, Y., He, G.-Q., Chen, Q., & Li, C.-Q. (2015). Gadd45b mediates axonal plasticity and subsequent functional recovery after experimental stroke in rats. Molecular Neurobiology, 52(3), 1245–1256.
- Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews. Neuroscience, 7, 179–193.
- Long, J. M., & Holtzman, D. M. (2019). Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 179(2), 312–339.
- Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and down syndrome. Proceedings of the National Academy of Sciences, 82(12), 4245–4249.
- Maze, A.-N. J. M. W. (2008). Experiment. Journal of Visualized Experiments, 19, 897.
- Ming, G.-l., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.
- Nagoor Meeran, M. F., Javed, H., Al Taee, H., Azimullah, S., & Ojha, S. K. (2017). Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology, 8, 380.
- Nakagawa, Y., Nakamura, S., Kaśe, Y., Noguchi, T., & Ishihara, T. (1987). Colchicine lesions in the rat hippocampus mimic the alterations of several markers in Alzheimer's disease. Brain Research, 408(1–2), 57–64.
- Nandi, A., Counts, N., Chen, S., Seligman, B., Tortorice, D., Vigo, D., & Bloom, D. E. (2022). Global and regional projections of the economic burden of Alzheimer's disease and related dementias from 2019 to 2050: A value of statistical life approach. eClinicalMedicine, 51, 101580. https://doi.org/10.1016/j.eclinm.2022.101580
- Nourmohammadi, S., Yousefi, S., Manouchehrabadi, M., Farhadi, M., Azizi, Z., & Torkaman-Boutorabi, A. (2022). Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease via inhibiting oxidative stress. BMC Complementary Medicine and Therapies, 22(1), 40. https://doi.org/10.1186/s12906-022-03524-1
- Ogaly, H. A., Abdel-Rahman, R. F., Mohamed, M. A. E., Ahmed-Farid, O. A., Khattab, M. S., & Abd-Elsalam, R. M. (2022). Thymol ameliorated neurotoxicity and cognitive deterioration in a thioacetamide-induced hepatic encephalopathy rat model; involvement of the BDNF/CREB signaling pathway. Food & Function, 13(11), 6180–6194. https://doi.org/10.1039/D1FO04292K
- Parihar, M. S., & Brewer, G. J. (2010). Amyloid-β as a modulator of synaptic plasticity. Journal of Alzheimer's Disease, 22(3), 741–763.
- Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106(2), 274–285.
- Pilz, G.-A., Bottes, S., Betizeau, M., Jörg, D. J., Carta, S., Simons, B. D., Helmchen, F., & Jessberger, S. (2018). Live imaging of neurogenesis in the adult mouse hippocampus. Science, 359(6376), 658–662.
- Singh, G., Maurya, S., Catalan, C., & De Lampasona, M. P. (2004). Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. Journal of Agricultural and Food Chemistry, 52(11), 3292–3296. https://doi.org/10.1021/jf035211c
- Skalicka-Wozniak, K., Budzynska, B., Biala, G., & Boguszewska-Czubara, A. (2018). Scopolamine-induced memory impairment is alleviated by xanthotoxin: Role of acetylcholinesterase and oxidative stress processes. ACS Chemical Neuroscience, 9(5), 1184–1194.
- Soni, K., & Parle, M. (2017). Trachyspermum ammi seeds supplementation helps reverse scopolamine, alprazolam and electroshock induced amnesia. Neurochemical Research, 42(5), 1333–1344. https://doi.org/10.1007/s11064-017-2177-0
- Spampanato, J., Sullivan, R. K., Turpin, F. R., Bartlett, P. F., & Sah, P. (2012). Properties of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS One, 7(9), e41029. https://doi.org/10.1371/journal.pone.0041029
- Vitaliano, G. D., Kim, J. K., Kaufman, M. J., Adam, C. W., Zeballos, G., Shanmugavadivu, A., Subburaju, S., McLaughlin, J. P., Lukas, S. E., & Vitaliano, F. (2022). Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Communications Biology, 5(1), 236. https://doi.org/10.1038/s42003-022-03177-3
- Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848–858. https://doi.org/10.1038/nprot.2006.116
- Walker, T. L., Yasuda, T., Adams, D. J., & Bartlett, P. F. (2007). The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. Journal of Neuroscience, 27(14), 3734–3742.
- Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., & Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535–539.
- Wang, J., Wang, X., Lv, B., Yuan, W., Feng, Z., Mi, W., & Zhang, H. (2014). Effects of fructus Akebiae on learning and memory impairment in a scopolamine-induced animal model of dementia. Experimental and Therapeutic Medicine, 8(2), 671–675. https://doi.org/10.3892/etm.2014.1775
- Yu, J. M., Kim, J. H., Song, G. S., & Jung, J. S. (2006). Increase in proliferation and differentiation of neural progenitor cells isolated from postnatal and adult mice brain by Wnt-3a and Wnt-5a. Molecular and Cellular Biochemistry, 288(1), 17–28.
- Zahedipour, F., Hosseini, S. A., Henney, N. C., Barreto, G. E., & Sahebkar, A. (2022). Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regeneration Research, 17(8), 1675–1684. https://doi.org/10.4103/1673-5374.332128
- Zeng, Y., Lv, F., Li, L., Yu, H., Dong, M., & Fu, Q. (2012). 7, 8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats. Journal of Neurochemistry, 122(4), 800–811.