Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain
Corresponding Author
Bárbara B. Garrido-Suárez
Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
Correspondence
Bárbara B. Garrido-Suárez, Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba.
Email: [email protected]
Gabino Garrido, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Gabino Garrido
Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
Correspondence
Bárbara B. Garrido-Suárez, Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba.
Email: [email protected]
Gabino Garrido, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile.
Email: [email protected]
Search for more papers by this authorOctavio Piñeros
Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
Search for more papers by this authorRené Delgado-Hernández
Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
Search for more papers by this authorCorresponding Author
Bárbara B. Garrido-Suárez
Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
Correspondence
Bárbara B. Garrido-Suárez, Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba.
Email: [email protected]
Gabino Garrido, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Gabino Garrido
Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
Correspondence
Bárbara B. Garrido-Suárez, Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba.
Email: [email protected]
Gabino Garrido, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile.
Email: [email protected]
Search for more papers by this authorOctavio Piñeros
Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
Search for more papers by this authorRené Delgado-Hernández
Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
Search for more papers by this authorAbstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
CONFLICT OF INTEREST
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
REFERENCES
- Aboott, F. V., Hong, Y., & Flanklin, K. B. (1996). The effects of lesions of the dorsolateral funiculus on formalin pain and morphine analgesia: A dose-response analysis. Pain, 65, 17–23. https://doi.org/10.1016/0304-3959(95)00162-X
- Abramson, S. B., Attur, M., Amin, A. R., & Clancy, R. (2001). Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Current Rheumatology Reports, 3, 535–541.
- Alcaraz, M. J., Megías, J., García-Arnandis, I., Clérigues, V., & Guillén, M. I. (2010). New molecular targets for the treatment of osteoarthritis. Biochemical Pharmacology, 80, 13–21. https://doi.org/10.1016/j.bcp.2010.02.017
- Aley, K. O., Messing, R. O., Mochly-Rosen, D., & Levine, J. D. (2000). Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. The Journal of Neuroscience, 20, 4680–4685. https://doi.org/10.1523/JNEUROSCI.20-12-04680.2000
- Allen, K. D., Renner, J. B., DeVellis, B., Helmick, C. G., & Jordan, J. M. (2008). Osteoarthritis and sleep: The Johnston Country Osteoarthritis Project. The Journal of Rheumatology, 35, 1102–1107.
- Arendt-Nielsen, L., & Graven-Nielsen, T. (2011). Translational musculoskeletal pain research. Best Practice & Research. Clinical Rheumatology, 25, 209–226. https://doi.org/10.1016/j.berh.2010.01.013
- Arendt-Nielsen, L., Nie, H., Laursen, M. B., Laursen, B. S., Madeleine, P., Simonsen, O. H., & Graven-Nielsen, T. (2010). Sensitization in patients with painful knee osteoarthritis. Pain, 149, 573–781. https://doi.org/10.1016/j.pain.2010.04.003
- Austin, P. J., & Moalem-Taylor, G. (2010). The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. Journal of Neuroimmunology, 229, 26–50. https://doi.org/10.1016/j.jneuroim.2010.08.013
- Baker, K., Grainger, A., Niu, J., Clancy, M., Guermazi, A., Crema, M., … Felson, D. T. (2010). Relation of synovitis to knee pain using contrast-enhanced MRIs. Annals of the Rheumatic Diseases, 69, 1779–1783. https://doi.org/10.1136/ard.2009.121426
- Banic, B., Petersen-Felix, S., Anderson, O. K., Radanov, B. P., Villinger, P. M., Arendt-Nielsen, L., & Curatotolo, M. (2004). Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and fibromyalgia. Pain, 107, 7–15. https://doi.org/10.1016/j.pain.2003.05.001
- Bennett, G. J., & Xie, Y. K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 33, 87–107. https://doi.org/10.1016/0304-3959(88)90209-6
- Berger, J. V., Knaepen, L., Janssen, S. P. M., Jaken, R. J. P., Marcus, M. A. E., Joosten, E. A. J., & Deumens, R. (2011). Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Research Reviews, 67, 282–310. https://doi.org/10.1016/j.brainresrev.2011.03.003
- Bezerra, M. M., Brain, S. D., Girao, V. C., Greenacre, S., Keeble, J., & Rocha, F. A. (2007). Neutrophils-derived peroxynitrite contributes to acute hyperalgesia and cell influx in zymosan arthritis. Naunyn-Schmiedeberg's Archives of Pharmacology, 374, 265–273. https://doi.org/10.1007/s00210-006-0123-9
- Bhatia, H. S., Candelario-Jalil, E., Pinheiro de Oliveira, A. C., Olajide, O. A., Martínez-Sánchez, G., & Fiebich, B. L. (2008). Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Archives of Biochemistry and Biophysics, 477, 253–258. https://doi.org/10.1016/j.abb.2008.06.017
- Birklein, F., & Schlereth, T. (2015). Complex regional pain syndrome—Significant progress in understanding. Pain, 156, S94–S103. https://doi.org/10.1097/01.j.pain.0000460344.54470.20
- Blanco, F. J., Rego, I., & Ruiz-Romero, C. (2011). The role of mitochondria in osteoarthritis. Nature Reviews. Rheumatology, 7, 161–169. https://doi.org/10.1038/nrrheum.2010.213
- Block, J. A. (2014). Osteoarthritis: OA guidelines: Improving care or merely codifying practice? Nature Reviews. Rheumatology, 10, 324–326. https://doi.org/10.1038/nrrheum.2014.61
- Bordet, T., & Pruss, R. M. (2009). Targeting neuroprotection as an alternative approach to preventing and treating neuropathic pain. Neurotherapeutics, 6, 648–662. https://doi.org/10.1016/j.nurt.2009.07.001
- Burr, D. B., & Gallant, M. A. (2012). Bone remodelling in osteoarthritis. Nature Reviews. Rheumatology, 8, 665–673. https://doi.org/10.1038/nrrheum.2012.130
- Cady, R. J., Hirst, J. J., & Durham, P. L. (2010). Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis. Molecular Pain, 6, 91. https://doi.org/10.1186/1744-8069-6-91
- Camacho, A., Simão, M., Cohen-Solal, M., Richette, P., Branco, J., & Cancela, M. L. (2016). Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthrosis under mechanical stress. Osteoarthritis and Cartilage, 24, 494–502. https://doi.org/10.1016/j.joca.2015.09.007
- Campos-Esparza, M. R., Sánchez-Gómez, M. V., & Matute, C. (2009). Molecular mechanisms of neuroprotection by two natural antioxidants polyphenols. Cell Calcium, 45, 358–368. https://doi.org/10.1016/j.ceca.2008.12.007
- Chae, S., Piao, M. J., Kang, K. A., Zhang, R., Kim, K. C., Youn, U. J., … Hyun, J. W. (2011). Inhibition of matrix metalloproteinase-1 induced by oxidative stress in human keratinocytes by mangiferin isolated from Anemarrhena asphodeloides. Bioscience, Biotechnology, and Biochemistry, 75, 2321–2325. https://doi.org/10.1271/bbb.110465
- Chappell, A. S., Ossanna, M. J., Liu-Seifert, H., Iyengar, S., Skljarevski, V., Li, L. C., … Collin, H. (2009). Duloxetine, a centrally acting analgesic, in the treatment of patients with osteoarthritis knee pain: A 13-week, randomized, placebo-controlled trial. Pain, 146, 253–260. https://doi.org/10.1016/j.pain.2009.06.024
- Chatterji, S., Byles, J., Cutler, D., Seeman, T., & Verdes, E. (2015). Health, functioning and disability in older adults—Current status and future implications. Lancet, 385, 563–575. https://doi.org/10.1016/S0140-6736(14)61462-8
- Chen, Z., Muscoli, C., Doyle, T., Bryant, L., Cuzzocrea, S., Mollace, V., … Salvemini, D. (2010). NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during the nociceptive processing. Pain, 149, 100–106. https://doi.org/10.1016/j.pain.2010.01.015
- Coderre, T. J., & Bennett, G. J. (2010). A hypothesis for the cause of complex regional pain syndrome-type I (reflex sympathetic dystrophy): Pain due to deep-tissue microvascular pathology. Pain Medicine, 11, 1224–1238. https://doi.org/10.1111/j.15264637.2010.00911.x
- Coderre, T. J., Vaccarino, A. L., & Melzack, R. (1990). Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Research, 535, 155–158. https://doi.org/10.1016/0006-8993(90)91835-5
- Coderre, T. J., Yasphal, K., & Henry, J. L. (1994). Specific contribution of lumbar spinal mechanisms to persistent nociceptive responses in the formalin test. Neuroreport, 5, 1337–1340. https://doi.org/10.1097/00001756-199406000-00011
- Cunha, F. Q., Lorenzetti, B. B., Poole, S., & Ferreira, S. H. (1991). Interleukin-18 as a mediator of sympathetic pain. British Journal of Pharmacology, 104, 765–767. https://doi.org/10.1111/j.1476-5381.1991.tb12502.x
- Cunha, F. Q., Poole, S., Lorenzetti, B. B., & Ferreira, S. H. (1992). The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. British Journal of Pharmacology, 107, 660–664. https://doi.org/10.1111/j.1476-5381.1992.tb14503.x
- Cunha, T. M., Roman-Campos, D., Lotufo, C. M., Duarte, H. L., Souza, G. R., Verri, W. A. Jr., … Ferreira, S. H. (2010). Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 107, 4442–4447. https://doi.org/10.1073/pnas.0914733107
- Cury, Y., Picolo, G., Gutierrez, V. P., & Ferreira, S. H. (2011). Pain and analgesia. The dual effect of nitric oxide in the nociceptive system. Nitric Oxide, 25, 243–254. https://doi.org/10.1016/j.niox.2011.06.004
- Das, J., Ghosh, J., Roy, A., & Sil, P. C. (2012). Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2-NFkB pathways. Toxicology and Applied Pharmacology, 260, 35–47. https://doi.org/10.1016/j.taap.2012.01.015
- Davis, K. D., & Moayedi, M. (2013). Central mechanisms of pain revealed through functional and structural MRI. Journal of Neuroimmune Pharmacology, 8, 518–534. https://doi.org/10.1007/s11481-012-9386-8
- De Leo, J. A., Tawfik, V. L., & La Croix-Fralish, M. L. (2006). The tetrapartite synapse: Path to CNS sensitization and chronic pain. Pain, 122, 17–21. https://doi.org/10.1016/j.pain.2006.02.034
- Debový, P. (2011). Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Annals of Anatomy, 193, 267–275. https://doi.org/10.1016/j.aanat.2011.02.011
- Delaisse, J. M., & Vaes, G. (1992). Mechanism of mineral solubilization and matrix degradation in osteoclastic bone resorption. In B. R. Rifkin, & C. V. Gay (Eds.), Biology and physiology of the osteoclast (pp. 289–314). Ann Arbor: CRC.
- De Leo, J. A. (2007). In L. S. Sorkin, & L. R. Watkins (Eds.), Immune and glial regulation of pain. Seattle: IASP Press.
- Dilshara, M. G., Kang, C. H., Choi, Y. H., & Kim, G. Y. (2015). Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity. BMB Reports, 48, 559–564. https://doi.org/10.5483/BMBRep.2015.48.10.003
- Duarte, I. D., Dos Santos, I. R., Lorenzetti, B. B., & Ferreira, S. H. (1992). Analgesia by direct antagonism of nociceptor sensitization involves the arginine–nitric oxide–cGMP pathway. European Journal of Pharmacology, 217, 225–227. https://doi.org/10.1016/0014-2999(92)90881-4
- Duarte, I. D., Lorenzetti, B. B., & Ferreira, S. H. (1990). Peripheral analgesia and activation of the nitric oxide–cyclic GMP pathway. European Journal of Pharmacology, 186, 289–293. https://doi.org/10.1016/0014-2999(90)90446-D
- Dye, S. F., Vaupel, G. L., & Dye, C. C. (1998). Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. The American Journal of Sports Medicine, 26, 773–777. https://doi.org/10.1177/03635465980260060601
- Ebrahimi, A., & Schluesener, H. (2012). Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Research Reviews, 11, 329–345. https://doi.org/10.1016/j.arr.2012.01.006
- Edwards, M. A., Loxley, R. A., Williams, A. J., Connor, M., & Phillips, J. K. (2007). Lack of functional expression of NMDA receptors in PC12 cells. Neurotoxicology, 28, 876–885. https://doi.org/10.1016/j.neuro.2007.04.006
- Eitner, A., Pester, J., Nietzsche, S., Hofmann, G. O., & Schaible, H. G. (2013). The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis and Cartilage, 21, 1383–1391. https://doi.org/10.1016/j.joca.2013.06.018
- Ferreira, S. H., Duarte, I. D., & Lorenzetti, B. B. (1991). The molecular mechanism of action of peripheral morphine analgesia: Stimulation of the cGMP system via nitric oxide release. European Journal of Pharmacology, 201, 121–122. https://doi.org/10.1016/0014-2999(91)90333-L
- Ferreira, S. H., Lorenzetti, B. B., Bristow, A. F., & Poole, S. (1988). Interleukin-1β as a potent hyperalgesic agent antagonized by tripeptide analogue. Nature, 334, 698–700. https://doi.org/10.1038/334698a0
- Ferreira, S. H., & Nakamura, M. (1979). I-Prostaglandin hyperalgesia. A cAMP/Ca2+ dependent process. Prostaglandins, 18, 179–190. https://doi.org/10.1016/0090-6980(79)90103-5
- Ferreira-Gomes, J., Adães, S., Sarkander, J., & Castro-Lopes, J. M. (2010). Phenotypic alterations on neurons that innervate osteoarthritis joints in rats. Arthritis and Rheumatism, 62, 3677–3685. https://doi.org/10.1002/art.27713
- Finnerup, N. B., Attal, N., Haroutounian, S., McNicol, E., Baron, R., Dworkin, R. H., … Wallace, M. (2015). Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. The Lancet. Neurology, 14, 162–173. https://doi.org/10.1016/S1474-4422(14)70251-0
- Fishbain, D. (2000). Evidence-based data on pain relief with antidepressants. Annals of Medicine, 32, 305–316. https://doi.org/10.3109/07853890008995932
- Fu, E. S., Zhang, Y. P., Sagen, J., Candiotti, K. A., Morton, P. D., Liebl, D. J., … Brambilla, R. (2010). Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain, 148, 509–518. https://doi.org/10.1016/j.pain.2010.01.001
- Fu, K. Y., Light, A. R., & Maixner, W. (2000). Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience, 101, 1127–1135. https://doi.org/10.1016/S0306-4522(00)00376-6
- Fujii, Y., Ozaki, N., Taguchi, T., Mizumura, K., Furukawa, K., & Sugiura, Y. (2008). TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain, 140, 292–304. https://doi.org/10.1016/j.pain.2008.08.013
- Gao, X., Kim, H. K., Cheng, J. M., & Cheng, K. (2007). Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain, 131, 262–271. https://doi.org/10.1016/j.pain.2007.01.011
- Gao, Y. J., & Ji, R. R. (2010). Targeting astrocyte signaling for chronic pain. Neurotherapeutics, 7, 482–493. https://doi.org/10.1016/j.nurt.2010.05.016
- García, D., Delgado, R., Ubeira, F. M., & Leiro, J. (2002). Modulation of rat macrophage function by the Mangifera indica L. extract (Vimang) and mangiferin. International Immunopharmacology, 2, 797–806. https://doi.org/10.1016/S1567-5769(02)00018-8
- García-Rivera, D., Delgado, R., Bougarne, N., Haegeman, G., & Berghe, W. V. (2011). Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Letters, 305, 21–31. https://doi.org/10.1016/j.canlet.2011.02.011
- Garrido, G., Delgado, R., Lemus, Y., Rodríguez, J., García, D., & Núñez-Selles, A. J. (2004). Protection against septic shock and suppression of tumor necrosis factor alpha and nitric oxide production on macrophages and microglia by a standard aqueous extract of Mangifera indica L. (Vimang®): Role of mangiferin isolated from the extract. Pharmacological Research, 50, 165–172. https://doi.org/10.1016/j.phrs.2003.12.020
- Garrido, G., González, D., Lemus, Y., García, D., Lodeiro, L., Quintero, G., … Delgado, R. (2004). In vivo and in vitro anti-inflammatory activity of Mangifera indica L. extract (VIMANG®). Pharmacological Research, 50, 143–149. https://doi.org/10.1016/j.phrs.2003.12.003
- Garrido, G., Gonzalez, D., Romay, C., Nuñez-Selles, A. J., & Delgado, R. (2008). Scavenger effect of a mango (Mangifera indica L.) food supplement's active ingredient on free radicals produced by human polymorphonuclear cells and hypoxanthine–xanthine oxidase chemiluminescence systems. Food Chemistry, 107, 1008–1014. https://doi.org/10.1016/j.foodchem.2007.09.012
- Garrido-Suárez, B., Garrido, G., Delgado, R., Bosch, F., & Rabí, M. C. (2011). Case series in patients with zoster-associated pain using Mangifera indica L extract. Forschende Komplementärmedizin, 18, 345–350. https://doi.org/10.1159/000335124
10.1159/000335124 Google Scholar
- Garrido-Suárez, B., Rabí, M. C., Bosch, F., Garrido, G., & Delgado-Hernández, R. (2009). Introduction of supplementation with Vimang® formulations in complex regional pain syndrome. Experience in 15 patients [Spanish]. Revista de la Sociedad Española del Dolor, 16, 87–96. https://doi.org/10.1016/S1134-8046(09)70915-2
10.1016/S1134-8046(09)70915-2 Google Scholar
- Garrido-Suárez, B. B., Garrido, G., Castro-Labrada, M., Merino, N., Valdés, O., Rodeiro, I., … Delgado-Hernández, R. (2014). Antihypernociceptive effect of mangiferin in persistent and neuropathic pain models in rats. Pharmacology, Biochemistry, and Behavior, 124, 311–319. https://doi.org/10.1016/j.pbb.2014.06.019
- Garrido-Suárez, B. B., Garrido, G., Castro-Labrada, M., Pardo-Ruíz, Z., Bellma Menéndez, A., Spencer, E., … Delgado-Hernández, R. (2018). Anti-allodynic effect of mangiferin in rats with chronic post-ischemia pain: A model of complex regional pain syndrome type I. Frontiers in Pharmacology, 9, 1119. https://doi.org/10.3389/fphar.2018.01119
- Garrido-Suárez, B. B., Garrido, G., Delgado, R., Bosch, F., & Rabí, M. C. (2010). A Mangifera indica L. extract could be used to treat neuropathic pain and implication of mangiferin. Molecules, 15, 9035–9045. https://doi.org/10.3390/molecules15129035
- Garrido-Suárez, B. B., Garrido, G., García, M., & Delgado-Hernández, R. (2014). Antihyperalgesic effects of an aqueous stem bark extract of Mangifera indica L. Role of mangiferin isolated from the extract. Phytotherapy Research, 28, 1646–1653. https://doi.org/10.1002/ptr.5177
- Gilron, I., Jensen, T. S., & Dickenson, A. H. (2013). Combination pharmacotherapy for management of chronic pain: From bench to bedside. The Lancet. Neurology, 12, 1084–1095. https://doi.org/10.1016/S1474-4422(13)70193-5
- Goldring, M. B., & Berenbaum, F. (2015). Emerging targets in osteoarthritis therapy. Current Opinion in Pharmacology, 22, 51–63. https://doi.org/10.1016/j.coph.2015.03.004
- Gottlied, M., Leal-Campanario, R., Campos-Esparza, M. R., Sánchez-Gómez, M. V., Alberdi, E., Arranz, A., … Matute, C. (2006). Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiology of Disease, 23, 374–386. https://doi.org/10.1016/j.nbd.2006.03.017
- Green, G. M., & Dickenson, A. (1997). GABA-receptor control of the amplitude and duration of the neuronal responses to formalin in the rat spinal cord. European Journal of Pain, 1, 95–104. https://doi.org/10.1016/S1090-3801(97)90067-7
- de Groot, J. F., Coggeshall, R. E., & Carlton, S. M. (1997). The reorganization of mu opioid receptors in the rat dorsal horn following peripheral axotomy. Neuroscience Letters, 233, 113–116. https://doi.org/10.1016/S0304-3940(97)00642-3
- Guingamp, C., Gegout-Pottie, P., Philippe, L., Terlain, B., Netter, P., & Gillet, P. (1997). Mono-iodoacetate-induced experimental osteoarthritis: A dose-response study of loss of mobility, morphology and biochemistry. Arthritis and Rheumatism, 40, 1670–1679. https://doi.org/10.1002/1529-0131(199709)40:9<1670::AID-ART17>3.0.CO,2-W
- Guo, W., Zou, S., Guan, Y., Ikeda, T., Tal, M., Dubner, R., & Ren, K. (2002). Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. Journal of Neurophysiology, 22, 6208–6217. https://doi.org/10.1523/JNEUROSCI.22-14-06208.2002
- Gwilym, S. E., Filippini, N., Douaud, G., Carr, A. J., & Tracey, I. (2010). Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: A longitudinal voxel-based morphometric study. Arthritis and Rheumatism, 62, 2930–2940. https://doi.org/10.1002/art.27585
- Gwilym, S. E., Keltner, J. R., Warnaby, C. E., Carr, A. J., Chizh, B., Chessell, I., & Tracey, I. (2009). Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis and Rheumatism, 61, 1226–1234. https://doi.org/10.1002/art.24837
- Hacimuftuoglu, A., Handy, C. R., Goettl, V. M., Lin, C. G., Dane, S., & Stephens, R. L. Jr. (2006). Antioxidants attenuate multiple phases of formalin-induced nociceptive response in mice. Behavioural Brain Research, 173, 211–216. https://doi.org/10.1016/j.bbr.2006.06.030
- Hannan, M. T., Felson, D. T., & Pincus, T. (2000). Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. The Journal of Rheumatology, 27, 1513–1517.
- Hefti, F. F., Rosenthal, A., Walicke, P. A., Wyatt, S., Vergara, G., Shelton, D. L., & Davies, A. M. (2006). Novel class of pain drugs based on antagonism of NGF. Trends in Pharmacological Sciences, 27, 85–91.
- Heinricher, M. M., Tavares, I., Leith, J. L., & Lumb, B. M. (2009). Descending control of nociception: Specificity, recruitment and plasticity. Brain Research Reviews, 60, 214–225. https://doi.org/10.1016/j.brainresrev.2008.12.009
- Henry, J. L., Yasphal, K., Pitcher, G. M., & Coderre, T. J. (1999). Physiological evidence that the ‘interphase' in the formalin test is due to active inhibition. Pain, 82, 57–63. https://doi.org/10.1016/S0304-3959(99)00033-0
- Higgs, J., Wasowski, C., Loscalzo, L. M., & Marder, M. (2013). In vitro binding affinities of a series of flavonoids for m-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice. Neuropharmacology, 72, 9e19. https://doi.org/10.1016/j.neuropharm.2013.04.020
- Ho, T. Y., Santora, K., Chen, J. C., Frankshum, A. L., & Bagnell, C. A. (2011). Effects of relaxin and estrogens on bone remodelling markers, receptor activator NFκB ligand (RANKL) and osteoprotegerin (OPG) in rat adjuvant-induced arthritis. Bone, 48, 1346–1353. https://doi.org/10.1016/j.bone.2011.03.684
- Hochman, J. R., Davis, A. M., Elkayam, J., Gagliese, L., & Hawker, G. A. (2013). Neuropathic pain symptoms on the modified painDETECT correlate with signs of central sensitization in knee osteoarthritis. Osteoarthritis and Cartilage, 21, 1236–1242. https://doi.org/10.1016/j.joca.2013.06.023
- Howard, M. A., Sanders, D., Krause, K., O'Muircheartaigh, J., Fotopoulou, A., Zelaya, F., … Williams, S. C. (2012). Alterations in resting-state regional cerebral blood flow demonstrate ongoing pain in osteoarthritis: An arterial spin-labeled magnetic resonance imaging study. Arthritis and Rheumatism, 64, 3936–3946. https://doi.org/10.1002/art.37685
- Huang, G. S., Tseng, C. Y., Lee, C. H., Su, S. L., & Lee, H. S. (2010). Effects of (−)-epigallocatechin-3-gallate on cyclooxygenase 2, PGE (2), and IL-8 expression induced by IL-1beta in human synovial fibroblasts. Rheumatology International, 30, 1197–1203. https://doi.org/10.1007/s00296-009-1128-8
- Huh, J. E., Koh, P. S., Seo, B. K., Park, Y. C., Baek, Y. H., Lee, J. D., & Park, D. S. (2014). Mangiferin reduces the inhibition of chondrogenic differentiation by IL-1β in mesenchymal stem cells from subchondral bone and targets multiple aspects of the Smad and SOX9 pathways. International Journal of Molecular Science, 15, 16025–16042. https://doi.org/10.3390/ijms150916025
- Huh, J. E., Seo, B. K., Baek, Y. H., Lee, S., Lee, J. D., Choi, D. Y., & Park, D. S. (2012). Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes. BMC Complementary and Alternative Medicine, 12, 256. https://doi.org/10.1186/1472-6882-12-256
- Ikeda, H., Stark, J., Fischer, H., Wagner, M., Drdla, R., Jager, T., & Sandkuhler, J. (2006). Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science, 312, 1659–1662. https://doi.org/10.1126/science.1127233
- Ikeuchi, M., Kolker, S. J., Burnes, L. A., Walder, R. Y., & Sluka, K. A. (2008). Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain, 137, 662–669. https://doi.org/10.1016/j.pain.2008.01.020
- Iuvone, T., Esposito, G., De Fillippis, D., Scuderi, C., & Steardo, L. (2009). Cannabidiol: A promising drug for neurodegenerative disorders? CNS Neuroscience & Therapeutics, 15, 65–75. https://doi.org/10.1111/j.1755-5949.2008.00065.x
- Izquierdo, T., Espinoza de los Monteros-Zuñiga, A., Cervantes-Durán, C., Lozada, M. C., & Godínez-Chaparro, B. (2013). Mechanisms underlying the antinociceptive effect of mangiferin in the formalin test. European Journal of Pharmacology, 718, 393–400. https://doi.org/10.1016/j.ejphar.2013.08.004
- Jacobson, K. A. (2015). New paradigms in GPCR drug discovery. Biochemical Pharmacology, 98, 541–555. https://doi.org/10.1016/j.bcp.2015.08.085
- Jaggi, A. S., & Singh, N. (2012). Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 291, 1–9. https://doi.org/10.1016/j.tox.2011.10.019
- Ji, R. R., Berta, T., & Nedergaard, M. (2013). Glia and pain: Is chronic pain a gliopathy? Pain, 154, S10–S28. https://doi.org/10.1016/j.pain.2013.06.022
- Ji, R. R., Xu, Z. Z., Wang, X., & Lo, E. H. (2009). Matrix metalloprotease regulation of neuropathic pain. Trends in Pharmacological Sciences, 30, 336–340. https://doi.org/10.1016/j.tips.2009.04.002
- Joseph, E. K., & Levine, J. D. (2006). Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain, 121, 105–114. https://doi.org/10.1016/j.pain.2005.12.010
- Jung, J. S., Jung, K., Kim, D. H., & Kim, H. S. (2012). Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: Involvement of PI3K/Akt and MAPK signaling pathways. Pharmacological Research, 66, 95–103. https://doi.org/10.1016/j.phrs.2012.02.013
- Kajander, K. C., Sahara, Y., Iadarola, M. J., & Bennett, G. J. (1990). Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides, 11, 719–728. https://doi.org/10.1016/0196-9781(90)90187-A
- Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P., & Fahmi, H. (2011). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews. Rheumatology, 7, 33–42. https://doi.org/10.1038/nrrheum.2010.196
- Khattab, M. M. (2006). TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: A key role for superoxide anion. European Journal of Pharmacology, 548, 167–173. https://doi.org/10.1016/j.ejphar.2006.08.007
- Kim, J., Xu, M., Xo, R., Mates, A., Wilson, G. L., Pearsall, A. W. 4th, & Grishko, V. (2010). Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis and Cartilage, 18, 424–432. https://doi.org/10.1016/j.joca.2009.09.008
- Kosek, E., & Ordeberg, G. (2000). Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following surgical pain relief. Pain, 88, 69–78. https://doi.org/10.1016/S0304-3959(00)00310-9
- Krustev, E., Rioux, D., & McDougall, J. J. (2015). Mechanisms and mediators that drive arthritis pain. Current Osteoporosis Reports, 13, 216–224. https://doi.org/10.1007/s11914-015-0275-y
- Kuhn, K., D'Lima, D. D., Hashimoto, S., & Lotz, M. (2004). Cell death in cartilage. Osteoarthritis and Cartilage, 12, 1–16. https://doi.org/10.1016/j.joca.2003.09.015
- Kwak, K. H., Jung, H., Park, J. M., Yeo, J. S., Kim, H., Lee, H. C., … Lim, D. G. (2014). A peroxynitrite decomposition catalyst prevents mechanical allodynia and NMDA receptor activation in the hind-paw ischemia reperfusion injury rats. Experimental and Therapeutic Medicine, 7, 508–512. https://doi.org/10.3892/etm.2013.1440
- Kwak, K. H., Lim, D. G., & Baek, W. (2011). N-acetyl-L-cysteine attenuates ischemia/reperfusion injury–induced allodynia and N-methyl-D-aspartate receptor activation in rats. Current Therapeutic Research, Clinical and Experimental, 72, 216–227. https://doi.org/10.1016/j.curtheres.2011.08.001
- Kwon, M. S., Seo, Y. J., Choi, S. M., Lee, J. K., Jung, J. S., Park, S. H., & Suh, H. W. (2008). The effect of formalin pretreatment on nicotine-induced antinociceptive effect: The role of mu opioid receptor in the hippocampus. Neuroscience, 154, 415–423. https://doi.org/10.1016/j.neuroscience.2008.03.053
- La Porta, C., Bura, S. A., Aracil-Fernández, A., Manzanares, J., & Maldonado, R. (2013). Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. Pain, 154, 160–174. https://doi.org/10.1016/j.pain.2012.10.009
- Laferrière, A., Millecamps, M., Xanthos, D. N., Xiao, W. H., Siau, C., de Mos, M., … Coderre, T. J. (2008). Cutaneous tactile allodynia associated with microvascular dysfunction in muscle. Molecular Pain, 4, 49. https://doi.org/10.1186/1744-8069-4-49
- Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. The Journal of Pain, 10, 895–926. https://doi.org/10.1016/j.jpain.2009.06.012
- Lawrence, R. C., Felson, D. T., Helmick, C. G., Arnold, L. M., Choi, H., Deyo, R. A., … National Arthritis Data Workgroup (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis and Rheumatism, 58, 26–35. https://doi.org/10.1002/art.23176
- Lee, Y. C., Nassikas, N. J., & Clauw, D. J. (2011). The role of central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Research & Therapy, 13, 211. https://doi.org/10.1186/ar3306
- Lee, Y. W., Chaplan, S. R., & Yaksh, T. L. (1995). Systemic and supraspinal, but not spinal opiates supress allodynia in a rat neuropathic pain model. Neuroscience Letters, 199, 111–114. https://doi.org/10.1016/0304-3940(95)12034-2
- Leiro, J., Arranz, J. A., Yáñez, M., Ubeira, F. M., Sanmartín, M. L., & Orallo, F. (2004). Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin. International Immunopharmacology, 4, 763–778. https://doi.org/10.1016/j.intimp.2004.03.002
- Leiro, J. M., Álvarez, E., Arranz, J. A., González Siso, I., & Orallo, F. (2003). In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-α and transforming growth factor-β genes. Biochemical Pharmacology, 65, 1361–1371. https://doi.org/10.1016/S0006-2952(03)00041-8
- Lemus-Molina, Y., Sánchez-Gómez, M. V., Delgado-Hernández, R., & Matute, C. (2009). Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. Neurotoxicology, 30, 1053–1058. https://doi.org/10.1016/j.neuro.2009.06.012
- Lia, J., Xua, L., Denga, X., Jianga, C., Pana, C., Chena, L., … Liu, W. (2016). N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases. Pain, 157, 1711–1723. https://doi.org/10.1097/j.pain.0000000000000575
- Lima, F. O., Souza, G. R., Verri, W. A. Jr., Parada, C. A., Ferreira, S. H., Cunha, F. Q., & Cunha, T. M. (2010). Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: Involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain, 151, 506–515. https://doi.org/10.1016/j.pain.2010.08.014
- Lin, Y. L., Zhou, L. J., Hu, N. W., Xu, J. T., Chang, Y. W., Zhang, T., … Liu, X. G. (2007). Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: The role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology, 52, 708–715. https://doi.org/10.1016/j.neuropharm.2006.09.011
- Lingor, P., Koch, J. C., Tönges, L., & Bähr, M. (2012). Axonal degeneration as a therapeutic target in the CNS. Cell and Tissue Research, 349, 289–311. https://doi.org/10.1007/s00441-012-1362-3
- Lopes, S. C., da Silva, A. V., Rodriguez Arruda, B., Morais, T. C., Barros Rios, J., Trevisan, M. T., … Santos, F. A. (2013). Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: Role of endogenous opioids, KATP-Channels and adenosine. Pharmacology, Biochemistry, and Behavior, 110, 19–26. https://doi.org/10.1016/j.pbb.2013.05.016
- López-Mantecón, A. M., Garrido, G., Delgado-Hernández, R., & Garrido-Suárez, B. B. (2014). Combination of Mangifera indica L. extract supplementation plus methotrexate in rheumatoid arthritis patients: A pilot study. Phytotherapy Research, 28, 1163–1172. https://doi.org/10.1002/ptr.5108
- de los Monteros-Zuñiga, A. E., Izquierdo, T., Quiñones-Bastidas, G. N., Rocha-González, H. I., & Godínez-Chaparrom, B. (2016). Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMPATP sensitive K+ channels pathway and serotoninergic system. Pharmacology, Biochemistry, and Behavior, 150–151, 190–197. https://doi.org/10.1016/j.pbb.2016.10.007
- Mahmoud-Awny, M., Attia, A. S., Abd-Ellah, M. F., & El-Abhar, H. S. (2015). Mangiferin mitigates gastric ulcer in ischemia/reperfused rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 signaling pathways. PLoS One, 10, e0132497. https://doi.org/10.1371/journal.pone.0132497
- Malan, T. P., Ossipov, M. H., Gardell, L. R., Ibrahim, M., Bian, D., Lai, J., & Porreca, F. (2000). Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain, 86, 185–194.
- Malfait, A. M., & Schnitzer, T. J. (2013). Towards a mechanism-based approach to pain management in osteoarthritis. Nature Reviews. Rheumatology, 9, 654–664. https://doi.org/10.1038/nrrheum.2013.138
- Matties, B. K., & Franklin, K. B. J. (1992). Formalin pain is expressed in decerebrate rats but not attenuate by morphine. Pain, 51, 199–206. https://doi.org/10.1016/0304-3959(92)90261-9
- McDougall, J. J., Albacete, S., Schülert, N., Mitchell, P. G., Lin, C., Oskins, J. L., … Chambers, M. G. (2017). Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthritis and Cartilage, 25, 926–934. https://doi.org/10.1016/j.joca.2016.08.016
- Moilanen, L. J., Hamalainen, M., Nummenmaa, E., Ilmarinen, P., Vuolteenaho, K., Nieminen, R. M., … Moilanen, E. (2015). Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice–potential role of TRPA1 in osteoarthritis. Osteoarthritis and Cartilage, 23, 2017–2026. https://doi.org/10.1016/j.joca.2015.09.008
- de Mos, M., Laferrière, A., Millecamps, M., Pilkington, M., Sturkenboom, M. C. J. M., Huygen, F. J. P. M., & Coderre, T. J. (2009). Role of NFkB in an animal model of complex regional pain syndrome–type I (CRPS-I). The Journal of Pain, 10, 1161–1169. https://doi.org/10.1016/j.jpain.2009.04.012
- Mousa, S. A., Zhang, Q., Sitte, N., Ji, R., & Stein, C. (2001). Beta-endorphin-containing memory cells and mu-opioid receptors undergo transport to peripheral inflamed tissue. Journal of Neuroimmunology, 115, 71–78. https://doi.org/10.1016/S0165-5728(01)00271-5
- Nagase, H., & Fujii, H. (2013). Essential structure of k opioid receptor agonist nalfurafine for binding to k receptor. Current Pharmaceutical Design, 19, 7400–7414. https://doi.org/10.2174/138161281942140105165011
- Nakamura, M., & Ferreira, S. H. (1987). A peripheral sympathetic component in inflammatory hyperalgesia. European Journal of Pharmacology, 135, 145–153. https://doi.org/10.1016/0014-2999(87)90606-6
- Nakamura, M., & Ferreira, S. H. (1988). Peripheral analgesic action of clonidine: Mediation by release of endogenous enkephalin-like substances. European Journal of Pharmacology, 146, 223–228. https://doi.org/10.1016/0014-2999(88)90296-8
- Nascimento, D., Pozza, D. H., Castro-Lopes, J. M., & Neto, F. L. (2011). Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals, 19, 210–221. https://doi.org/10.1159/000330195
- Neogi, T. (2013). The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage, 21, 1145–1153. https://doi.org/10.1016/j.joca.2013.03.018
- Neumann, S., Doubell, T. P., Leslie, T., & Woolf, C. J. (1996). Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature, 384, 360–364. https://doi.org/10.1038/384360a0
- Núñez-Sellés, A., Velázquez-Castro, H., Agüero-Agüero, J., González-González, J., Naddeo, F., De Simone, F., & Rastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars, fatty acids and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as nutritional supplement. Journal of Agricultural and Food Chemistry, 50, 762–766. https://doi.org/10.1021/jf011064b
- Oaklander, A. L., Rissmiller, J. G., Gelman, L. B., Zheng, L., Chang, Y., & Gott, R. (2006). Evidence of focal small-fiber axonal degeneration in complex regional pain syndrome-I (reflex sympathetic dystrophy). Pain, 120, 235–243. https://doi.org/10.1016/j.pain.2005.09.036
- Ohtori, S., Inoue, G., Orita, S., Takaso, M., Eguchi, Y., Ochiai, N., … Ishikawa, T. (2013). Efficacy of combination of meloxicam and pregabalin for pain in knee osteoarthritis. Yonsei Medical Journal, 54, 1253–1258. https://doi.org/10.3349/ymj.2013.54.5.1253
- Okuda, K., Sakurada, C., Takahashi, M., Yamada, T., & Sakurada, T. (2001). Characterization of nociceptive responses and spinal releases of nitric oxide metabolites and glutamate evoked by different concentrations of formalin in rats. Pain, 92, 107–115. https://doi.org/10.1016/S0304-3959(00)00476-0
- Palmer, K., & Goodson, N. (2015). Ageing, musculoskeletal health and work. Best Practice & Research. Clinical Rheumatology, 29, 391–404. https://doi.org/10.1016/j.berh.2015.03.004
- Pan, C. W., Pan, Z. Z., Hu, J. J., Chen, W. L., Zhou, G. Y., Lin, W., … Xu, C. L. (2016). Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. European Journal of Pharmacology, 770, 85–91. https://doi.org/10.1016/j.ejphar.2015.12.006
- Pardo-Andreu, G. L., Barrios, M. F., Curti, C., Hernandez, I., Merino, N., Lemus, Y., … Delgado, R. (2008). Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver. Pharmacological Research, 57, 79–86. https://doi.org/10.1016/j.phrs.2007.12.004
- Pardo-Andreu, G. L., Maurmann, N., Kellermann, G. R., de Farias, C. B., Schwartsmann, G., Delgado, R., & Roesler, R. (2010). Mangiferin, a naturally glucoxilxanthone improves long-term object recognition memory in rats. European Journal of Pharmacology, 635, 124–128. https://doi.org/10.1016/j.ejphar.2010.03.011
- Patial, S., Luo, J., Porter, K. J., Benovic, J. L., & Parameswaran, N. (2010). G-protein-coupled-receptor kinases mediate TNFα-induced NFκB signalling via direct interaction with and phosphorylation of IκBα. The Biochemical Journal, 425, 169–178. https://doi.org/10.1042/BJ20090908
- Pertovaara, A. (2013). The noradrenergic pain regulation system: A potential target for pain therapy. European Journal of Pharmacology, 716, 2–7. https://doi.org/10.1016/j.ejphar.2013.01.067
- Philpott, H. T., O'Brien, M., & McDougall, J. J. (2017). Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain, 158, 2442–2451. https://doi.org/10.1097/j.pain.0000000000001052
- Porreca, F., Tang, Q. B., Bian, D., Riedl, M., Elde, R., & Lai, J. (1998). Spinal opioid mu receptor expression in lumbar spinal cord of rats following nerve injury. Brain Res., 795, 197–203.
- Poulet, B., & Staines, K. A. (2016). New developments in osteoarthritis and cartilage biology. Current Opinion in Pharmacology, 28, 8–13. https://doi.org/10.1016/j.coph.2016.02.009
- Prado, Y., Merino, N., Acosta, J., Herrera, J. A., Luque, Y., Hernández, I., … Rodeiro, I. (2015). Acute and 28-day subchronic toxicity studies of mangiferin, a glucosylxanthone isolated from Mangifera indica L. stem bark. Journal of Pharmacy & Pharmacognosy Research, 3, 13–23.
- Puehler, W., Zollner, C., Brack, A., Shaqura, M. A., Krause, H., Schafer, M., & Stein, C. (2004). Rapid upregulation of mu opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction. Neuroscience, 129, 473–479.
- Ramer, M. S., French, G. D., & Bisby, M. A. (1997). Wallerian degeneration is required for both neuropathic pain and sympathetic sprouting into the DRG. Pain, 72, 71–78. https://doi.org/10.1016/S0304-3959(97)00019-5
- Regan, E., Flannelly, J., Bowler, R., Tran, K., Nicks, M., Carbone, B. D., … Crapo, J. (2005). Extracellular superoxide dismutase and oxidant damage in osteoarthritis. Arthritis and Rheumatism, 52, 3479–3491. https://doi.org/10.1002/art.21387
- Richardson, D., Pearson, R. G., Kurian, N., Latif, M. L., Garle, M. J., Barrett, D. A., … Chapman, V. (2008). Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Research & Therapy, 10, R43. https://doi.org/10.1186/ar2401
- Rivat, C., & Ballantyne, J. (2016). The dark side of opioids in pain management: Basic science explains clinical observation. Pain Reports, 1, e570. https://doi.org/10.1097/PR9.0000000000000570
- Robinson, W. H., Lepus, C. M., Wang, Q., Raghu, H., Mao, R., Lindstrom, T. M., & Sokolove, J. (2016). Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews. Rheumatology, 12, 580–592. https://doi.org/10.1038/nrrheum.2016.136
- Robles-Flores, M., Melendez, L., Garcia, W., Mendoza-Hernandez, G., Lam, T. T., Castaneda-Patlan, C., & Gonzalez-Aguilar, H. (2008). Posttranslational modifications on protein kinase C isozymes: Effects of epinephrine and phorbol esters. Biochimica et Biophysica Acta, 1783, 695–712. https://doi.org/10.1016/j.bbamcr.2007.07.011
- Rocha, L. W., Bonet, I. J. M., Tambeli, C. H., de-Faria, F. M., & Parada, C. A. (2018). Local administration of mangiferin prevents experimental inflammatory mechanical hyperalgesia through CINC1/epinephrine/PKA pathway and TNF-α inhibition. European Journal of Pharmacology, 830, 87–94. https://doi.org/10.1016/j.ejphar.2018.04.030
- Sagar, D. R., Burston, J. J., Hathway, G. J., Woodhams, S. G., Pearson, R. G., Bennett, A. J., … Chapman, V. (2011). The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain. Molecular Pain, 7, 88. https://doi.org/10.1186/1744-8069-7-88
- Salvemini, D., Little, J. W., Doyle, T., & Neumann, W. L. (2011). Roles of reactive oxygen and nitrogen species in pain. Free Radical Biology & Medicine, 51, 951–966. https://doi.org/10.1016/j.freeradbiomed.2011.01.026
- Samad, T. A., Moore, K. A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., … Woolf, C. J. (2001). Interleukin-1beta-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410, 471–475. https://doi.org/10.1038/35068566
- Sanga, P., Katz, N., Polverejan, E., Wanga, S., Kelly, K. M., Haeussler, J., & Thipphawong, J. (2013). Efficacy, safety, and tolerability of fulranumab, an anti-nerve growth factor antibody, in the treatment of patients with moderate to severe osteoarthritis pain. Pain, 154, 1910–1919. https://doi.org/10.1016/j.pain.2013.05.051
- Sasaki, M., Ishizaki, K., Obata, H., & Goto, F. (2001). Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. European Journal of Pharmacology, 424, 45–52. https://doi.org/10.1016/S0014-2999(01)01117-7
- Schiller, P. W., Nguyen, T. M. D., Saray, A., Poon, A. W. H., Laferrière, A., & Coderre, T. J. (2015). The bifunctional m opioid agonist/antioxidant [Dmt(1)] DALDA is a superior analgesic in an animal model of complex regional pain syndrome-type I. ACS Chemical Neuroscience, 6, 1789–1793. https://doi.org/10.1021/acschemneuro.5b00228
- Schuelert, N., & McDougall, J. J. (2009). Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neuroscience Letters, 465, 184–188. https://doi.org/10.1016/j.neulet.2009.08.063
- Shen, C. L., Smith, B. J., Lo, D. F., Chyu, M. C., Dunn, D. M., Chen, C. H., & Kwun, I. S. (2012). Dietary polyphenols and mechanisms of osteoarthritis. The Journal of Nutritional Biochemistry, 23, 1367–1377. https://doi.org/10.1016/j.jnutbio.2012.04.001
- Siniscalco, D., Fuccio, C., Giordano, C., Ferraraccio, F., Palazzo, E., Luongo, L., … Novellis, V. (2007). Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacological Research, 55, 158–166. https://doi.org/10.1016/j.phrs.2006.11.009
- Sivilotti, L., & Woolf, C. J. (1994). The contribution of GABAA and glycine receptors to central sensitization: Disinhibition and touch-evoked allodynia in the spinal cord. Journal of Neurophysiology, 72, 169–179. https://doi.org/10.1152/jn.1994.72.1.169
- Staud, R., Weyl, E. E., Price, D. D., & Robinson, M. E. (2012). Mechanical and heat hyperalgesia highly predict clinical pain intensity in patients with chronic musculoskeletal pain syndromes. The Journal of Pain, 13, 725–735. https://doi.org/10.1016/j.jpain.2012.04.006
- Steigerwald, I., Schenk, M., Lahne, U., Gebuhr, P., Falke, D., & Hoggart, B. (2013). Effectiveness and tolerability of tapentadol prolonged release compared with prior opioid therapy for the management of severe, chronic osteoarthritis pain. Clinical Drug Investigation, 33, 607–619. https://doi.org/10.1007/s40261-013-0102-0
- Stein, C., Machelska, H., & Schafer, M. (2001). Peripheral analgesic and antiinflammatory effects of opioids. Zeitschrift für Rheumatologie, 60, 416–424. https://doi.org/10.1007/s003930170004
- Suchal, K., Malik, S., Gamad, N., Malhotra, R. K., Goyal, S. N., Ojha, S., … Arya, D. S. (2016). Mangiferin protect myocardial insults through modulation of MAPK/TGF-beta pathways. European Journal of Pharmacology, 776, 34–43. https://doi.org/10.1016/j.ejphar.2016.02.055
- Sullivan, M. D., & Howe, C. Q. (2013). Opioid therapy for chronic pain in Unites States: Promises and perils. Pain, 154, S94–S100. https://doi.org/10.1016/j.pain.2013.09.009
- Suzuki, R., Rygh, L. J., & Dickenson, A. H. (2004). Bad news from the brain: Descending 5-HT pathways that control spinal pain processing. Trends in Pharmacological Sciences, 25, 613–617. https://doi.org/10.1016/j.tips.2004.10.002
- Tajeriana, M., & Clarka, J. D. (2015). The role of the extracellular matrix in chronic pain following injury. Pain, 156, 366–370. https://doi.org/10.1097/01.j.pain.0000460323.80020.9d
- Takeda, T., Tsubaki, M., Kino, T., Yamagishi, M., Iida, M., Itoh, T., … Nishida, S. (2016). Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase. Chemico-Biological Interactions, 251, 26–33. https://doi.org/10.1016/j.cbi.2016.03.018
- Tetlow, L. C., Adlam, D. J., & Woolley, D. E. (2001). Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: Associations with degenerative changes. Arthritis and Rheumatism, 44, 585–594. https://doi.org/10.1002/1529-0131(200103)44:3<585:AID-ANR107>3.0.CO,2-C
- Thakur, M., Dickenson, A. H., & Baron, R. (2014). Osteoarthritis pain: Nociceptive or neuropathic? Nature Reviews. Rheumatology, 10, 374–380. https://doi.org/10.1038/nrrheum.2014.47
- Thal, D. M., Yeow, R. Y., Schoenau, C., Huber, J., & Tesmer, J. J. (2011). Molecular mechanism of selectivity among G protein-coupled receptor kinase 2 inhibitors. Molecular Pharmacology, 80, 294–303. https://doi.org/10.1124/mol.111.071522
- The European Musculoskeletal Surveillance and Information Network. Musculoskeletal health status in Europe. (Accessed May 1, 2015 at www.eumusc.net)
- Tomić, M., Tovilović, G., Butorović, B., Krstić, D., Janković, T., Aljančić, I., & Menković, N. (2005). Neuropharmacological evaluation of diethylether extract and xanthones of Gentiana kochiana. Pharmacology, Biochemistry, and Behavior, 81, 535–542. https://doi.org/10.1016/j.pbb.2005.03.019
- Tracey, I., & Bushnell, M. C. (2009). How neuroimaging studies have challenged us to rethink: Is chronic pain a disease? J. Pain, 10, 1113–1120. https://doi.org/10.1016/j.jpain.2009.09.001
- Tsubaki, M., Takeda, T., Kino, T., Itoh, T., Imano, M., Tanabe, G., … Nishida, S. (2015). Mangiferin suppresses CIA by suppressing the expression of TNF-α, IL-6, IL-1β, and RANKL through inhibiting the activation of NF-κB and ERK1/2. American Journal of Translational Research, 7, 1371–1381.
- Valverde, S., Duarte, E. M., Ducangé, D., Garrido, G., García-Rivera, D., Jáuregui, U., & Garrido, B. (2009). Utility of Vimang® formulations in patients with knee osteoarthrosis [Spanish]. Revista de la Sociedad Española del Dolor, 16, 32–41. https://doi.org/10.1016/S1134-8046(09)70803-1
10.1016/S1134-8046(09)70803-1 Google Scholar
- Varga, A., Bölcskei, K., Szöke, É., Almási, R., Czéh, G., Szolcsányi, J., & Pethö, G. (2006). Relative roles of protein kinase A and protein kinase C in modulation of transient receptor potential vanilloid type 1 receptor responsiveness in rat sensory neurons in vitro and peripheral nociceptors in vivo. Neuroscience, 140, 645–657. https://doi.org/10.1016/j.neuroscience.2006.02.035
- Vetter, G., Geisslinger, G., & Tegeder, I. (2001). Release of glutamate, nitric oxide and prostaglandin E2 and metabolic activity in the spinal cord of rats following peripheral nociceptive stimulation. Pain, 92, 213–218. https://doi.org/10.1016/S0304-3959(01)00258-5
- Vina, E. R., & Kwoh, C. K. (2018). Epidemiology of osteoarthritis: Literature update. Current Opinion in Rheumatology, 30, 160–167. https://doi.org/10.1097/BOR.0000000000000479
- Vonsy, J., Ghandehari, J., & Dickenson, A. (2009). Differential analgesic effects of morphine and gabapentin on behavioural measures of pain and disability in a model of osteoarthritis pain in rats. European Journal of Pain, 13, 786–793. https://doi.org/10.1016/j.ejpain.2008.09.008
- Watari, K., Nakaya, M., & Kurose, H. (2014). Multiple functions of G protein-coupled receptor kinases. Journal of Molecular Signaling, 9, 1. https://doi.org/10.1186/1750-2187-9-1
- Watkins, L. R., Milligan, E. D., & Maier, S. F. (2001). Glial activation: A driving force for pathological pain. Trends in Neurosciences, 24, 450–455. https://doi.org/10.1016/S0166-2236(00)01854-3
- Wei, X. H., Zhang, Y., Wu, C. Y., Xu, J. T., Xin, W. J., & Liu, X. G. (2007). Peri-sciatic administration of recombinant rat TNF-alpha induces mechanical allodynia via upregulation of TNF-alpha in dorsal root ganglia and in spinal dorsal horn: The role of NF-kappa B pathway. Experimental Neurology, 205, 471–484. https://doi.org/10.1016/j.expneurol.2007.03.012
- Westlund, K. N., Bowker, R. M., Ziegler, M. G., & Coulter, J. D. (1983). Noradrenergic projections to the spinal cord of the rat. Brain Research, 263, 15–31. https://doi.org/10.1016/0006-8993(83)91196-4
- Westlund, K. N., Kochukov, M. Y., Lu, Y., & McNearney, T. A. (2010). Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Molecular Pain, 6, 46. https://doi.org/10.1186/1744-8069-6-46
- Whiteman, M., Armstrong, J. S., Cheung, N. S., Siau, J. L., Rose, P., Schantz, J. T., … Halliwell, B. (2004). Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB Journal, 18, 1395–1397. https://doi.org/10.1096/fj.03-1096fje
- Whiteside, G. T., Boulet, J. M., & Walker, K. (2005). The role of central and peripheral mu opioid receptors in inflammatory pain and edema: A study using morphine and DiPOA ([8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid). The Journal of Pharmacology and Experimental Therapeutics, 314, 1234–1240. https://doi.org/10.1124/jpet.105.088351
- Whiteside, G. T., & Munglani, R. (2001). Cell death in the superficial dorsal horn in a model of neuropathic pain. J. Neurosci. Res., 64, 168–173. https://doi.org/10.1002/jnr.1062
- Wiffen, P., Collins, S., McQuay, H., Carroll, D., Jadad, A., & Moore, A. (2005). Anticonvulsant drugs for acute and chronic pain. The Cochrane Database of Systematic Reviews, 3, CD001133. https://doi.org/10.1002/14651858.CD001133
- Woolf, C. J. (2004). Pain: Moving from symptom control toward mechanism-specific pharmacologic management. Annals of Internal Medicine, 140, 441–451.
- Woolf, C. J., Allchorne, A., Safieh-Garabedian, B., & Poole, S. (1997). Cytokines, nerve growth factor and inflammatory hyperalgesia: The contribution of tumour necrosis factor alpha. British Journal of Pharmacology, 121, 417–424. https://doi.org/10.1038/sj.bjp.0701148
- Wu, H., Hung, K., Ohsawa, M., Mizoguchi, H., & Tseng, L. F. (2001). Antisera against endogenous opioids increase the nocifensive response to formalin: Demonstration of inhibitory β-endorphinergic control. European Journal of Pharmacology, 421, 39–43. https://doi.org/10.1016/S0014-2999(01)00970-0
- Wu, J., Lv, M., & Zhou, Y. (2019). Efficacy and side effects of curcumin for the treatment of osteoarthritis: A meta-analysis of randomized controlled trials. Pakistan Journal of Pharmaceutical Sciences, 32, 43–51.
- Wu, W. P., Hao, J. X., Halldner, L., Lovdahl, C., DeLander, G. E., Wiesenfeld-Hallin, Z., … Xu, X. J. (2005). Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain, 113, 395–404. https://doi.org/10.1016/j.pain.2004.11.020
- Xu, Z., Tong, C., Pan, H. L., Cerda, S. E., & Eisenach, J. C. (1997). Intravenous morphine increases release of nitric oxide from spinal cord by an alpha-adrenergic and cholinergic mechanisms. Journal of Neurophysiology, 78, 2072–2078. https://doi.org/10.1152/jn.1997.78.4.2072
- Zajac, D., Stasinska, A., Delgado, R., & Pokorski, M. (2013). Mangiferin and its traversal into the brain. Advances in Experimental Medicine and Biology, 756, 105–111. https://doi.org/10.1007/978-94-007-4549-0_14
- Zhang, Q., Hu, L., Chen, L., Li, H., Wu, J., Liu, W., … Yan, G. (2018). (−)-Epigallocatechin-3-gallate, the major green tea catechin, regulates the desensitization of β1 adrenoceptor via GRK2 in experimental heart failure. Inflammopharmacology, 26, 1081–1091. https://doi.org/10.1007/s10787-017-0429-x
- Zhao, C. S., Tao, Y. X., Tall, J. M., Donovan, D. M., Meyer, R. A., & Raja, S. N. (2003). Role of μ opioid receptors in formalin-induced pain behavior in mice. Experimental Neurology, 184, 839–845. https://doi.org/10.1016/S0014-4886(03)00346-7
- Ziskoven, C., Jäger, M., Kircher, J., Patzer, T., Bloch, W., Brixius, K., & Krauspe, R. (2011). Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Canadian Journal of Physiology and Pharmacology, 89, 455–466. https://doi.org/10.1139/y11-055