Antidiabetic potential of anthraquinones: A review
Corresponding Author
Aminu Mohammed
Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
Correspondence
Aminu Mohammed, Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
Email: [email protected], [email protected]
Search for more papers by this authorMohammed Auwal Ibrahim
Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
Search for more papers by this authorNasir Tajuddeen
Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
Search for more papers by this authorAbubakar Babando Aliyu
Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
Search for more papers by this authorMurtala Bindawa Isah
Department of Biochemistry, Umaru Musa Yar'adua University, Katsina, Nigeria
Search for more papers by this authorCorresponding Author
Aminu Mohammed
Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
Correspondence
Aminu Mohammed, Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
Email: [email protected], [email protected]
Search for more papers by this authorMohammed Auwal Ibrahim
Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
Search for more papers by this authorNasir Tajuddeen
Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
Search for more papers by this authorAbubakar Babando Aliyu
Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
Search for more papers by this authorMurtala Bindawa Isah
Department of Biochemistry, Umaru Musa Yar'adua University, Katsina, Nigeria
Search for more papers by this authorAbstract
The present study was designed to review the antidiabetic potential of anthraquinones (AQs) with emphasis on the extent of blood glucose reduction, the half maximal inhibitory concentration values (in vitro studies), the proposed mechanisms of action, and the structure activity relationship studies. We sourced relevant data from the major scientific databases (Pubmed, Science Direct, Medline, and Google Scholar). According to our search, 25 AQs have shown variable antidiabetic potential, whereas one AQ (morindone-6-O-β-D-primeveroside) showed no blood glucose-lowering ability. Emodin and rhein showed the most promising antidiabetic potential in various models. The proposed mechanisms of antidiabetic action include upregulation of insulin receptor substrates-1, phosphoinositide-3-kinase, and Akt-ser473 expression and elevation of glucagon-like peptide-1 level in diabetic animal models linked to the potent protein tyrosine phosphatase 1B and dipeptidyl peptidase-4 inhibitions. In addition, activation of peroxisome proliferator-activated receptors gamma and inhibition of α-glucosidase activity are other possible targets proposed as the mechanism of AQs antidiabetic action. The position and the number of hydroxyl group showed great influence on the overall antidiabetic potential of AQs. AQs hold promising antidiabetic activity despite scanty information. We hope that the present study will serve as a template to further explore the antidiabetic potential of AQs and subsequent antidiabetic drug development.
CONFLICT OF INTEREST
The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.
REFERENCES
- Abu Eid, S., Adams, M., Scherer, T., Torres-Gómez, H., Hackl, M. T., Kaplanian, M., … Fürnsinn, C. (2017). Emodin, a compound with putative antidiabetic potential, deteriorates glucose tolerance in rodents. European Journal of Pharmacology, 798, 77–84. https://doi.org/10.1016/j.ejphar.2017.01.022
- Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: The good, the bad and the future. Nature Medicine, 19(5), 557–566. https://doi.org/10.1038/nm.3159
- Alshatwi, A. A., & Subash-Babu, P. (2016). Aloe-emodin protects RIN-5F (Pancreatic β-cell) cell from glucotoxicity via regulation of pro-inflammatory cytokine and downregulation of Bax and caspase 3. Biomolecules & Therapeutics, 24(1), 49–56. https://doi.org/10.4062/biomolther.2015.056
- American Diabetes Association (ADA) (2015). Classification and diagnosis of diabetes. Diabetes Care, 38(Supplement 1), S8–S16. https://doi.org/10.2337/dc15-S005
- Anand, S., Saravanababu, C., Lakshmi, B. S., & Muthusamy, V. S. (2016). Aloe-emodin glycosides ameliorate glucose utilization via insulin downstream regulators: An in vivo investigation. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 191–198. https://doi.org/10.22159/ajpcr.2016.v9s2.13533
- Arvindekar, A., More, T., Payghan, P. V., Laddha, K., Ghoshal, N., & Arvindekar, A. U. (2015). Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi. Food & Function, 6(8), 2693–2700. https://doi.org/10.1039/C5FO00519A
- Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 24(5), 547–553. https://doi.org/10.1016/j.jsps.2015.03.013
- Babu, K. S., Tiwari, A. K., Srinivas, P. V., Ali, A. Z., Raju, B. C., & Rao, J. M. (2004). Yeast and mammalian α-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall. ex Meisson. Bioorganic & Medicinal Chemistry Letters, 14(14), 3841–3845. https://doi.org/10.1016/j.bmcl.2004.04.062
- Bae, U. J., Song, M. Y., Jang, H. Y., Lim, J. M., Lee, S. Y., Ryu, J. H., & Park, J. H. (2015). Emodin isolated from Rheum palmatum prevents cytokine-induced β-cell damage and the development of type 1 diabetes. Journal of Functional Foods, 16, 9–19. https://doi.org/10.1016/j.jff.2015.04.016
- Bing, S., Haoqiang, Z., Chunyu, M., Yali, Y., Jing, W., Yumeng, G., … Xuezheng, L. (2018). The effects of emodin on insulin resistance in KKAy mice with diabetes mellitus. Pharmacognosy Magazine, 14(56), 344–350. https://doi.org/10.4103/pm.pm_362_17
- Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., & Monks, T. J. (2000). Role of quinones in toxicology. Chemical Research in Toxicology, 13(3), 135–160. https://doi.org/10.1021/tx9902082
- Bondy, G. S., Armstrong, C. L., Dawson, B. A., Héroux-Metcalf, C., Neville, G. A., & Rogers, C. G. (1994). Toxicity of structurally related anthraquinones and anthrones to mammalian cells in vitro. Toxicology In Vitro, 8(3), 329–335. https://doi.org/10.1016/0887-2333(94)90153-8
- Cai, Y., Rongli, Q., Yu, L., Chongfa, H., Jing, W., Yongzhang, J., & Aiping, W. (2016). Hypoglycemic activity of two anthraquinone derivatives from Juncus setchuensis Buchen. International Journal of Clinical and Experimental Medicine, 9(10), 19664–19672.
- Cao, Y., Chang, S., Dong, J., Zhu, S., Zheng, X., Li, J., … Zhang, Y. (2016). Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle. European Journal of Pharmacology, 780, 194–201. https://doi.org/10.1016/j.ejphar.2016.03.049
- Cardoso, C. R. L., Nathalie, C., Leite, F. O., Carlos, A. A., Loureiro, B. B. V., & Gil, F. S. (2017). Efficacy and safety of diacerein in patients with inadequately controlled type 2 diabetes: A randomized controlled trial. Diabetes Care, 40(10), 1356–1363. https://doi.org/10.2337/dc17-0374
- Caro, Y., Anamale, L., Fouillaud, M., Laurent, P., Petit, T., & Dufosse, L. (2012). Natural hydroxyanthraquinoid pigments as potent food grade colorants: An overview. Natural Products and Bioprospecting, 2(5), 174–193. https://doi.org/10.1007/s13659-012-0086-0
- Chang, K. C., Li, L., Sanborn, T. M., Shieh, B., Lenhart, P., Ammar, D., … Petrash, J. M. (2016). Characterization of emodin as a therapeutic agent for diabetic cataract. Journal of Natural Products, 79(5), 1439–1444. https://doi.org/10.1021/acs.jnatprod.6b00185
- Chen, T., Zheng, L. Y., Xiao, W., Gui, D., Wang, X., & Wang, N. (2015). Emodin ameliorates high glucose induced-podocyte epithelial-mesenchymal transition in vitro and in vivo. Cellular Physiology and Biochemistry, 35, 1425–1436. https://doi.org/10.1159/000373963
- Chen, Z., Zhang, L., Yi, J., Yang, Z., Zhang, Z., & Li, Z. (2012). Promotion of adiponectin multimerization by emodin: A novel AMPK activator with PPARγ-agonist activity. Journal of Cellular Biochemistry, 113(11), 3547–3558. https://doi.org/10.1002/jcb.24232
- Chiazza, F., & Collino, M. (2016). Peroxisome proliferator-activated receptors (PPARs) in glucose control. In Molecular Nutrition and Diabetes (pp. 105–114). Netherland: Elsevier B.V. https://doi.org/10.1016/B978-0-12-801585-8.00009-9
10.1016/B978-0-12-801585-8.00009-9 Google Scholar
- Choi, S. B., Byoung, S. K., Seong, K. P., Jin, S. J., & Sunmin, P. (2006). Insulin sensitizing and α-glucoamylase inhibitory action of sennosides, rheins and rhaponticin in RheiRhizoma. Life Sciences, 78(9), 934–942. https://doi.org/10.1016/j.lfs.2005.05.101
- Choi, S. Z., Lee, S. O., Jang, K. U., Chung, S. H., Park, S. H., Kang, H. C., … Lee, K. R. (2005). Antidiabetic stilbene and anthraquinone derivatives from Rheum undulatum. Archives of Pharmacal Research, 28(9), 1027–1030. https://doi.org/10.1007/BF02977396
- Chu, X., Zhou, S., Sun, R., Wang, L., Xing, C., Liang, R., & Kong, Q. (2018). Chrysophanol relieves cognition deficits and neuronal loss through inhibition of inflammation in diabetic mice. Neurochemical Research, 43(4), 972–983. https://doi.org/10.1007/s11064-018-2503-1
- Comini, L. R., Montoya, S. N., Páez, P. L., Argüello, G. A., Albesa, I., & Cabrera, J. L. (2011). Antibacterial activity of anthraquinone derivatives from Heterophyllaeapustulata (Rubiaceae). Journal of Photochemistry and Photobiology B: Biology, 102(2), 108–114. https://doi.org/10.1016/j.jphotobiol.2010.09.009
- De Flora, S., Scarfì, S., Izzotti, A., D'Agostini, F., Chang, C. C., Bagnasco, M., & Trosko, J. E. (2006). Induction by 7, 12-dimethylbenz (a) anthracene of molecular and biochemical alterations in transformed human mammary epithelial stem cells, and protection by N-acetylcysteine. International Journal of Oncology, 29(3), 521–529.
- Deacon, C. F. (2018). Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides, 100, 150–157. https://doi.org/10.1016/j.peptides.2017.10.011
- Demirezer, L. O., & Ozenver, N. (2015). Determination of alpha-glucosidase inhibitory effects of anthraquinone aglycons by molecular docking and in vitro studies. Planta Medica, 81(16), 76. https://doi.org/10.1055/s-0035-1565453
- Di, X., Wang, X., & Liu, Y. (2015). Effect of piperine on the bioavailabilityand pharmacokinetics of emodin in rats. Journal of Pharmaceutical and Biomedical Analysis, 115, 144–149. https://doi.org/10.1016/j.jpba.2015.06.027
- Dong, X., Fu, J., Yin, X., Cao, S., Li, X., Lin, L., & Huyiligeqi, N. J. (2016). Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytothererapy Research, 30(8), 1207–1218. https://doi.org/10.1002/ptr.5631
- Du, H., Shao, J., Gu, P., Lu, B., Wang, J., & Liu, Z. (2010). Effect of rhein treatment on first-phase insulin secretory function in db/db mice. Zhong Yao Za Zhi, 35(20), 2764–2767.
- Du, H., Shao, J., Gu, P., Lu, B., Ye, X., & Liu, Z. (2012). Improvement of glucose tolerance by rhein with restored early-phase insulin secretion in db/db mice. Journal of Endocrinological Investigation, 35, 607–612. https://doi.org/10.1007/BF03345796
- Du, H., Shao, J. Q., Gu, P., Wang, J., & Liu, Z. H. (2011). Effect of early intervention with rhein on islet function in db/db mice. Nan Fang Yi Ke Da Xue Xue Bao, 31(9), 1526–1529.
- Elsevier B.V.. Netherlands.
- Feng, Y., Huang, S. L., Dou, W., Zhang, S., Chen, J. H., Shen, Y., … Ying, L. Y. (2010). Emodin, a natural product, selectively inhibits 11β-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. British Journal of Pharmacology, 161, 113–126. https://doi.org/10.1111/j.1476-5381.2010.00826.x
- Fichna, M., Żurawek, M., Gryczyńska, M., Sowińska, A., Nowak, J., & Ruchała, M. (2016). Polymorphic variants of the HSD11B1 gene may be involved in adverse metabolic effects of glucocorticoid replacement therapy in Addison's disease. European Journal of Internal Medicine, 31, 99–104. https://doi.org/10.1016/j.ejim.2016.03.027
- Fouillaud, M., Caro, Y., Venkatachalam, M., Grondin, I., & Dufossé, L. (2018). An anthraquinones. In M. L. Leo, & J. A. G. Nollet (Eds.), Phenolic compounds in food characterization and analysis (pp. 130–170). United State: CRC Press.
10.1201/9781315120157-9 Google Scholar
- Friedman, T. C., Mastorakos, T. D., Newman, N. M., Mullen, E. G., Horton, E. G., Papadopoulos, N. M., & Chrousos, G. P. (1996). Carbohydrate and lipid metabolism in endogenous hypercortisolism: Shared features with metabolic syndrome X and NIDDM. Endocrine Journal, 43, 645–655. https://doi.org/10.1507/endocrj.43.645
- Fukuda, I., Kaneko, A., Nishiumi, S., Kawase, M., Nishikiori, R., Fujitake, N., & Ashida, H. (2009). Structure-activity relationships of anthraquinones on the suppression of DNA-binding activity of the aryl hydrocarbon receptor induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Journal of Bioscience and Bioengineering, 107(3), 296–300. https://doi.org/10.1016/j.jbiosc.2008.10.008
- Gao, Q., Qin, W. S., Jia, Z. H., Zheng, J. M., Zeng, C. H., Li, L. S., & Liu, Z. H. (2010). Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy. Planta Medica, 76(1), 27–33. https://doi.org/10.1055/s-0029-1185948
- Gao, Y., Zhang, J., Li, G., Xu, H., Yi, Y., Wua, Q., … Li, G. D. (2015). Protection of vascular endothelial cells from high glucose-induced cytotoxicity by emodin. Biochemical Pharmacology, 94, 39–45. https://doi.org/10.1016/j.bcp.2015.01.006
- Gebhardt, R., Lerche, K. S., Götschel, F., Günther, R., & Kolander, J. (2010). 4-Aminoethylamino-emodin-a novel potent inhibitor of GSK-3β-acts as an insulin-sensitizer avoiding downstream effects of activated β-catenin. Journal of Cellular and Molecular Medicine, 14, 1276–1293. https://doi.org/10.1111/j.1582-4934.2009.00701.x
- Gorkom, B. V., & Vries, E. D. (1999). Anthranoid laxatives and their potential carcinogenic effects. Alimentary Pharmacology & Therapeutics, 13(4), 443–452. https://doi.org/10.1046/j.1365-2036.1999.00468.x
- Goto, H., Shimada, Y., Tanikawa, K., Sato, S., Hikiami, H., Sekiya, N., & Terasawa, K. (2003). Clinical evaluation of the effect of Daio (Rhei Rhizoma) on the progression of diabetic nephropathy with overt proteinuria. The American Journal of Chinese Medicine, 31(02), 267–275. https://doi.org/10.1142/s0192415x03000850
- Guin, P. S., Das, S., & Mandal, P. C. (2011). Electrochemical reduction of quinones in different media: A review. International Journal of Electrochemistry, 2011. https://doi.org/10.4061/2011/816202
10.4061/2011/816202 Google Scholar
- Gum, R. J., Gaede, L. L., Koterski, S. L., Heindel, M., Clampit, J. E., Zinker, B. A., … Rondinone, C. M. (2003). Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes, 52(1), 21–28. https://doi.org/10.2337/diabetes.52.1.21
- Heo, S. K., Yun, H. J., Noh, E. K., & Park, S. D. (2010). Emodin and rhein inhibit LIGHT-induced monocytes migration by blocking of ROS production. Vascular Pharmacology, 53(1-2), 28–37. https://doi.org/10.1016/j.vph.2010.03.002
- Hietala, P., Marvola, M., Parviainen, T., & Lainonen, H. (1987). Laxative potency and acute toxicity of some anthraquinone derivatives, senna extracts and fractions of senna extracts. Basic & Clinical Pharmacology & Toxicology, 61(2), 153–156. https://doi.org/10.1111/j.1600-0773.1987.tb01794.x
- Hou, J., Gu, Y., Zhao, S., Huo, M., Wang, S., Zhang, Y., … Li, X. (2018). Anti-inflammatory effects of aurantio-obtusin from seed of Cassia obtusifolia L. through modulation of the NF-κB pathway. Molecules, 23(12), 3093. https://doi.org/10.3390/molecules23123093
- Hung, H. Y., Qian, K., Morris-Natschke, S. L., Hsu, C. S., & Lee, K. S. (2012). Recent discovery of plant-derived anti-diabetic natural products. Natural Product Reports, 29, 580–606. https://doi.org/10.1039/C2NP00074A
- Jang, D. S., Lee, G. Y., Kim, Y. S., Lee, Y. M., Kim, C. S., Yoo, J. L., & Kim, J. S. (2007). Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biological and Pharmaceutical Bulletin, 30, 2207–2210. https://doi.org/10.1248/bpb.30.2207
- Jia, Z. H., Liu, Z. H., Zheng, J. M., Zeng, C. H., & Li, L. S. (2007). Combined therapy of rhein and benazepril on the treatment of diabetic nephropathy in db/db mice. Experimental and Clinical Endocrinology & Diabetes, 115(09), 571–576. https://doi.org/10.1055/s-2007-981469
- Juhaszova, M., Zorov, D. B., Kim, S. H., Pepe, S., Fu, Q., Fishbein, K. W., … Olson, E. N. (2004). Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation, 113(11), 1535–1549. https://doi.org/10.1172/JCI200419906
- Jung, H. A., Ali, M. Y., & Choi, J. S. (2016). Promising inhibitory effects of anthraquinones, naphthopyrone, and naphthalene glycosides, from Cassia obtusifolia on α-glucosidase and human protein tyrosine phosphatases 1B. Molecules, 22(1), 1–15. https://doi.org/10.3390/molecules22010028
- Kamiya, K., Hamabe, W., Harada, S., Murakami, R., Tokuyama, S., & Satake, T. (2008). Chemical constituents of Morinda citrifolia roots exhibit hypoglycemic effects in streptozotocin-induced diabetic mice. Biological and Pharmaceutical Bulletin, 31(5), 935–938. https://doi.org/10.1248/bpb.31.935
- Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019
- Korulkin, D. Y., & Muzychkina, R. A. (2014). Biosynthesis and metabolism of anthraquinone derivatives. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 8(7), 454–457.
- Krumbiegel, G., & Schulz, H. U. (1993). Rhein and aloe-emodin kinetics from senna laxatives in man. Pharmacology, 47(1), 120–124. https://doi.org/10.1159/000139850
- Kumar, V., Singh, R., Mahdi, F., Mahdi, A. A., & Singh, R. K. (2017). Experimental validation of antidiabetic and Antioxidant potential of Cassia tora (L.): an indigenous medicinal plant. Indian Journal of Clinical Biochemistry, 32(3), 323–328. https://doi.org/10.1007/s12291-016-0608-3
- Lee, J. H., Kim, J. M., & Kim, C. (2003). Pharmacokinetic analysis of rhein in Rheum undulatum L. Journal of Ethnopharmacology, 84(1), 5–9. https://doi.org/10.1016/S0378-8741(02)00222-2
- Lee, M. S., & Sohn, C. B. (2008). Anti-diabetic properties of chrysophanol and its glucoside from Rhubarb rhizome. Biological and Pharmaceutical Bulletin, 31(11), 2154–2157. https://doi.org/10.1248/bpb.31.2154
- Lee, S. Y., Park, S. L., Hwang, J. T., Yi, S. H., Nam, Y. D., & Lim, S. I. (2012). Antidiabetic effect of Morinda citrifolia (Noni) fermented by Cheonggukjang in KK-Ay diabetic mice. Evidence-based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/163280
- Lee, W., Yoon, G., Hwang, Y. R., Kim, Y. K., & Kim, S. N. (2012). Anti-obesity and hypolipidemic effects of Rheum undulatum in high-fat diet-fed C57BL/6 mice through protein tyrosine phosphatase 1B inhibition. BMB Reports, 45(3), 141–146. https://doi.org/10.5483/BMBRep.2012.45.3.141
- Lehrke, M., & Lazar, M. A. (2005). The many faces of PPARγ. Cell, 123(6), 993–999. https://doi.org/10.1016/j.cell.2005.11.026
- Li, J., Ding, L., Song, B., Xiao, X., Qi, M., Yang, Q., … Yang, L. (2016). Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. European Journal of Pharmacology, 770, 99–109. https://doi.org/10.1016/j.ejphar.20151.11.045
- Lian, Y., Xia, X., Zhao, H., & Zhu, Y. (2017). The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice. Biomedicine and Pharmacotherapy, 93, 1175–1189. https://doi.org/10.1016/j.biopha.2017.05.148
- Liu, J., Chen, Z., Zhang, Y., Zhang, M., Zhu, X., Fan, Y., … Liu, Z. (2013). Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes, 62, 3927–3935. https://doi.org/10.2337/db13-0251
- Liu, Y., Jia, L., Liu, Z. C., Zhang, H., Zhang, P. J., Wan, Q., & Wang, R. (2009). Emodin ameliorates high-glucose induced mesangial p38 over-activation and hypocontractility via activation of PPARγ. Experimental & Molecular Medicine, 41, 648–655. https://doi.org/10.3858/emm.2009.41.9.071
- Luo, T., Li, N., & He, Y. Q. (2015). Emodin inhibits human sperm functions by reducing sperm [Ca2+]i and tyrosine phosphorylation. Reproductive Toxicology, 51, 14–21. https://doi.org/10.1016/j.reprotox.2014.11.007
- Ma, J., Zheng, L., Deng, T., Li, C. L., He, Y. S., Li, H. J., & Li, P. (2013). Stilbene glucoside inhibits the glucuronidation of emodin in rats through the down-regulation of UDP-glucuronosyltransferases 1A8: Application to a drug-drug interaction study in Radix Polygoni multiflori. Journal of Ethnopharmacology, 147, 335–340. https://doi.org/10.1016/j.jep.2013.03.013
- MacDonald, P. E., El-kholy, W., Riedel, M. J., Salapatek, A. M. F., Light, P. E., & Wheeler, M. B. (2002). The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes, 51(suppl 3), S434–S442. https://doi.org/10.2337/diabetes.51.2007.S434
- Malaguti, C., Vilella, C. A., Vieira, K. P., Souza, G. H., Hyslop, S., & de Lima, Z. R. (2008). Diacerhein downregulate proinflammatory cytokines expression and decrease the autoimmune diabetes frequency in nonobese diabetic (NOD) mice. International Immunopharmacology, 8(6), 782–791. https://doi.org/10.1016/j.intimp.2008.01.020
- Malik, E. M., & Müller, C. E. (2016). Anthraquinones as pharmacological tools and drugs. Medicinal Research Reviews, 36(4), 705–748. https://doi.org/10.1002/med.21391
- Martín-Gallán, P., Carrascosa, A., Gussinyé, M., & Domínguez, C. (2003). Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radical Biology and Medicine, 34(12), 1563–1574. https://doi.org/10.1016/S0891-5849(03)00185-0
- Mohammed, M. M. D. (2016). Structure antimutagenicity relationship of anthraquinones. Natural Products Chemistry and Research, 4(228), 2. https://doi.org/10.4172/2329-6836.1000228
- Müeller, S. O., Schmitt, M., Dekant, W., Stopper, H., Schlatter, J., Schreier, P., & Lutz, W. K. (1999). Occurrence of emodin, chrysophanol and physcion in vegetables, herbs and liquors. Genotoxicity and anti-genotoxicity of the anthraquinones and of the whole plants. Food and Chemical Toxicology, 37(5), 481–491. https://doi.org/10.1016/S0278-6915(99)00027-7
- Müller, S. O., Eckert, I., Lutz, W. K., & Stopper, H. (1996). Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: Topoisomerase II mediated? Mutation Research/Genetic Toxicology, 371, 165–173. https://doi.org/10.1016/S0165-1218(96)90105-6
- National Toxicology Program. (2005). Toxicology and carcinogenesis studies of Anthraquinones (CAS NO. 84-65-1) feed studies in F344/N rats and B6C3F1 mice. National Toxicological Program Technical Report. Ser. 494, 1-363. http://ntp. niehs. nih. gov/files/TR494web1. pdf.
- Nayak, B. S., Marshall, J. R., Isitor, G., & Adogwa, A. (2011). Hypoglycemic and hepatoprotective activity of fermented fruit juice of Morindacitrifolia (Noni) in diabetic rats. Evidence-based Complementary and Alternative Medicine, 2011. https://doi.org/10.1155/2011/875293
- Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, U., & Guariguata, L. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 28, 40–50. https://doi.org/10.1016/j.diabres.2017.03.024
- Onoda, T., Li, W., Sasaki, T., Miyake, M., Higai, K., & Koike, K. (2016). Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan. Journal of Ethnopharmacology, 186, 84–90. https://doi.org/10.1016/j.jep.2016.03.063
- Oshida, K., Hirakata, M., Maeda, A., Miyoshi, T., & Miyamoto, Y. (2011). Toxicological effect of emodin in mouse testicular gene expression profile. Journal of Applied Toxicology, 31, 790–800. https://doi.org/10.1002/jat.1637
- Page, T. J., O'Brien, S., Holston, K., MacWilliams, P. S., Jefcoate, C. R., & Czuprynski, C. J. (2003). 7, 12-Dimethylbenz [a] anthracene-induced bone marrow toxicity is p53-dependent. Toxicological Sciences, 74(1), 85–92. https://doi.org/10.1093/toxsci/kfg115
- Peng, Y. H., Lin, S. P., Yu, C. P., Tsai, S. Y., Chen, M. Y., Hou, Y. C., & Chao, P. D. L. (2014). Serum concentrations of anthraquinones after intake of Folium Sennae and potential modulation on P-glycoprotein. Planta Medica, 80(15), 1291–1297. https://doi.org/10.1055/s-0034-1383040
- Pillai, P. P., & Nair, A. R. (2014). Hypericin biosynthesis in Hypericum hookerianum Wight and Arn: Investigation on biochemical pathways using metabolite inhibitors and suppression subtractive hybridization. ComptesRendusBiologies, 337(10), 571–580. https://doi.org/10.1016/j.crvi.2014.08.002
- Pyner, A., Nyambe-Silavwe, H., & Williamson, G. (2017). Inhibition of human and rat sucrase and maltase activities to assess antiglycemic potential: Optimization of the assay using acarbose and polyphenols. Journal of Agricultural and Food Chemistry, 65(39), 8643–8651. https://doi.org/10.1021/acs.jafc.7b03678
- Qi, L. W., Liu, E. H., Chu, C., Peng, Y. B., Cai, H. X., & Li, P. (2010). Anti-diabetic agents from natural products-an update from 2004 to 2009. Current Topics in Medicinal Chemistry, 10(4), 434–457. https://doi.org/10.2174/156802610790980620
- Rao, U. M., & Subramanian, S. (2009). Biochemical evaluation of antihyperglycemic and antioxidative effects of Morinda citrifolia fruit extract studied in streptozotocin-induced diabetic rats. Medicinal Chemistry Research, 18(6), 433–446. https://doi.org/10.1007/s00044-008-9140-1
- Ravindran, R., & Dorairaj, S. (2016). In silico molecular modelling dynamics of chrysophanol DPP4. World Journal of Pharmacy and Pharmaceutical Sciences, 5, 1611–1617. https://doi.org/10.20959/wjpps20168-7475
- Reagan-Shaw, S., Minakshi, N., & Nihal, A. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659–661. https://doi.org/10.1096/fj.07-9574LSF
- Rehman, K., & Akash, M. S. H. (2017). Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? Journal of Cellular Biochemistry, 118(11), 3577–3585. https://doi.org/10.1002/jcb.26097
- Salmeen, A., Andersen, J. N., Myers, M. P., Tonks, N. K., & Barford, D. (2000). Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Molecular Cell, 6(6), 1401–1412. https://doi.org/10.1016/S1097-2765(00)00137-4
- Sendelbach, L. E. (1989). A review of the toxicity and carcinogenicity of anthraquinone derivatives. Toxicology, 57(3), 227–240. https://doi.org/10.1016/0300-483X(89)90113-3
- Shen, M. Y., Lin, Y. P., Yang, B. C., Jang, Y. S., Chiang, C. K., Mettling, C., … Yang, W. C. (2012). Catenarin prevents type 1 diabetes in nonobese diabetic mice via inhibition of leukocyte migration involving the MEK6/p38 and MEK7/JNK pathways. Evidence-based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/982396
- Shia, C. S., Hou, Y. C., Tsai, S. Y., Chang, P. H., Leu, Y. L., & Chao, P. D. (2010). Differences in pharmacokinetics and ex vivo antioxidant activity following intravenous and oral administrations of emodin to rats. Journal of Pharmaceutical Sciences, 99(4), 2185–2195. https://doi.org/10.1002/jps.21978
- Shia, C. S., Juang, S. H., Tsai, S. Y., Chang, P. H., Kuo, S. C., Hou, Y. C., & Chao, P. D. (2009). Metabolism and pharmacokinetics of anthraquinones in Rheum palmatum in rats and ex vivo antioxidant activity. Planta Medica, 75(13), 1386–1392. https://doi.org/10.1055/s-0029-1185725
- Shu, L., Matveyenko, A. V., Kerr-Conte, J., Cho, J. H., McIntosh, C. H., & Maedler, K. (2009). Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP-and GLP-1 receptors and impaired beta-cell function. Human Molecular Genetics, 18(13), 2388–2399. https://doi.org/10.1093/hmg/ddp178
- Shukla, V., Asthana, S., Gupta, P., Dwivedi, P. D., Tripathi, A., & Das, M. (2017). Toxicity of naturally occurring anthraquinones. Advances in Molecular Toxicology, 11, 1–50. https://doi.org/10.1016/B978-0-12-812522-9.00001-4
- Song, P., Fan, X., Guo, Z., Fan, Y., & Yang, J. (2017). Therapeutic effects of emodin in type 2 diabetes mellitus in KKAy mouse model. International Journal of Clinical and Experimental Medicine, 10(10), 14408–14413.
- Song, P., Kim, J. H., Ghim, J., Yoon, J. H., Lee, A., Kwon, Y., … Ryu, S. H. (2013). Emodin regulates glucose utilization by activating AMP-activated protein kinase. The Journal of Biological Chemistry, 288(8), 5732–5742. https://doi.org/10.1074/jbc.M112.441477
- Tobar, N., Oliveira, A. G., Guadagnini, D., Bagarolli, R. A., Rocha, G. Z., Araujo, T. G., … Saad, M. J. A. (2011). Diacerhein improves glucose tolerance and insulin sensitivity in mice on a high-fat diet. Endocrinology, 152(11), 4080–4093. https://doi.org/10.1210/en.2011-0249
- Tres, G. S., Fuchs, S. C., Piovesan, F., Koehler-Santos, P., Pereira, F. D. S., Camey, S., … Moreira, L. B. (2018). Effect of diacerein on metabolic control and inflammatory markers in patients with type 2 diabetes using antidiabetic agents: A randomized controlled trial. Journal Diabetes Research, 2018. https://doi.org/10.1155/2018/4246521
- Tuduri, E., Lopez, M., Dieguez, C., Nadal, A., & Nogueiras, R. (2016). Glucagon-like peptide 1 analogs and their effects on pancreatic islets. Trends in Endocrinology and Metabolism, 27(5), 304–318. https://doi.org/10.1016/j.tem.2016.03.004
- Tzeng, T. F., Lu, H. J., Liou, S. S., Chang, C. J., & Liu, I. M. (2012). Emodin protects against high-fat diet-induced obesity via regulation of AMP-activated protein kinase pathways in white adipose tissue. Planta Medica, 78, 943–950. https://doi.org/10.1055/s-0031-1298626
- Ugi, S., Imamura, T., Maegawa, H., Egawa, K., Yoshizaki, T., Shi, K., … Olefsky, J. M. (2004). Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Molecular and Cellular Biology, 24(19), 8778–8789. https://doi.org/10.1128/MCB.24.19.8778-8789.2004
- Vadivel, V., Kunyanga, C. N., & Biesalski, H. K. (2012). Antioxidant potential and type II diabetes-related enzyme inhibition of Cassia obtusifolia L.: effect of indigenous processing methods. Food and Bioprocess Technology, 5, 2687. https://doi.org/10.1007/s11947-011-0620-9
- Van Gorkom, B. A. P., Timmer-Bosscha, H., De Jong, S., Van der Kolk, D. M., Kleibeuker, J. H., & De Vries, E. G. E. (2002). Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1. British Journal of Cancer, 86(9), 1494–1500. https://doi.org/10.1038/sj.bjc.6600255
- Wade, F., Belhaj, K., & Poizat, C. (2018). Protein tyrosine phosphatases in cardiac physiology and pathophysiology. Heart Failure Reviews, 23(2), 261–272. https://doi.org/10.1007/s10741-018-9676-1
- Walker, B. R., Connacher, A. A., Lindsay, R. M., Webb, D. J., & Edwards, C. R. W. (1995). Carbenoxolone increases hepatic insulin sensitivity in man: A novel role for 11- oxosteroid reductase in enhancing glucocorticoid receptor activation. The Journal of Clinical Endocrinology and Metabolism, 80, 3155–3159. https://doi.org/10.1210/jcem.80.11.7593419
- Wang, J., Huang, H., Liu, P., Tang, F., Qin, J., Huang, W., … Yang, B. (2006). Inhibition of phosphorylation of p38 MAPK involved in the protection of nephropathy by emodin in diabetic rats. European Journal of Pharmacology, 553(1–3), 297–303. https://doi.org/10.1016/j.ejphar.2006.08.087
- Wang, C. H., Wang, C. C., & Wei, Y. H. (2010). Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Annals of the New York Academy of Sciences, 1201(1), 157–165. https://doi.org/10.1111/j.1749-6632.2010.05625.x
- Wang, R., Zang, P., Chen, J., Wu, F., Zheng, Z., Ma, J., & Du, H. (2018). Gut microbiota play an essential role in the antidiabetic effects of rhein. Evidence-based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/6093282
- Wang, Z., Yang, L., Fan, H., Wu, P., Zhang, F., Zhang, C., … Li, M. (2017). Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum Linn that inhibits DPP4. Peer J, 5, e3283. https://doi.org/10.7717/peerj.3283
- Wu, W., Yan, R., Yao, M., Zhan, Y., & Wang, Y. (2014b). Pharmacokinetics of anthraquinones in rat plasma after oral administration of a rhubarb extract. Biomedical Chromatography, 28(4), 564–572. https://doi.org/10.1002/bmc.3070
- Wu, Z., Chen, Q., Ke, D., Li, G., & Deng, W. (2014a). Emodin protects against diabetic cardiomyopathy by regulating the AKT/GSK-3β signaling pathway in the rat model. Molecules, 19, 14782–14793. https://doi.org/10.3390/molecules190914782
- Wu, Y., Wang, X., Liu, P., Niu, Q., & Wu, Q. (2017). Quantitative determination of anthraquinones and resveratrol in Polygonum Cillinerve (Nakai) Ohwi by HPLC-PAD. Journal of AOAC International, 100, 25–29. https://doi.org/10.5740/jaoacint.16-0240.
- Xu, J., Chen, H. B., & Li, S. L. (2017). Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Medicinal Research Reviews, 37(5), 1140–1185. https://doi.org/10.1002/med.21431
- Xue, J., Ding, W., & Liu, Y. (2010). Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia, 81, 173–177. https://doi.org/10.1016/j.fitote.2009.08.020
- Yang, Y., Shang, W., Zhou, Z., Jiang, B., Jin, H., & Chen, M. (2007). Emodin with PPARγ ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochemical and Biophysical Research Communications, 353, 225–230. https://doi.org/10.1016/j.bbrc.2006.11.134
- Yen, G. C., Duh, P. D., & Chuang, D. Y. (2000). Antioxidant activity of anthraquinones and anthrone. Food Chemistry, 70(4), 437–441. https://doi.org/10.1016/S0308-8146(00)00108-4
- Yuan, Y., Zheng, J., Wang, M., Li, Y., Ruan, J., & Zhang, H. (2016). Metabolic activation of rhein: insights into the potential toxicity induced by rhein-containing herbs. Journal of Agricultural and Food Chemistry, 64(28), 5742–5750. https://doi.org/10.1021/acs.jafc.6b01872
- Zhang, H., Guo, Z., Wu, N., Xu, W., Han, L., Li, N., & Han, Y. (2012). Two novel naphthalene glucosides and an anthraquinone isolated from Rumex dentatus and their antiproliferation activities in four cell lines. Molecules, 17(1), 843–850. https://doi.org/10.3390/molecules17010843
- Zhang, L., Chang, J. H., Zhang, B. Q., Liu, X. G., Liu, P., Xue, H. F., Liu, C. Z. (2015). The pharmacokinetic study on the mechanism of toxicity attenuation of rhubarb total free anthraquinone oral colon-specific drug delivery system. Fitoterapia, 104, 86–96. https://doi.org/10.1016/j.fitote.2015.05.018
- Zhang, X., Zhang, R., Lv, P., Yang, J., Deng, Y., Xu, J., & Yang, Y. (2015). Emodin up-regulates glucose metabolism, decreases lipolysis, and attenuates inflammation in vitro. Journal of Diabetes, 7, 360–368. https://doi.org/10.1111/1753-0407.12190
- Zhao, Y., Chen, M. X., Kongstad, K. T., Jäger, A. K., & Staerk, D. (2017). Potential of polygonum cuspidatum root as an antidiabetic food: Dual high-resolution α-glucosidase and PTP1B inhibition profiling combined with HPLC-HRMS and NMR for identification of antidiabetic constituents. Journal of Agricultural and Food Chemistry, 65(22), 4421–4427. https://doi.org/10.1021/acs.jafc.7b01353
- Zhao, X. Y., Qiao, G. F., Li, B. X., Chai, L. M., Li, Z., Lu, Y. J., & Yang, B. F. (2009). Hypoglycaemic and hypolipidaemic effects of emodin and its effect on l-type calcium channels in dyslipidaemic-diabetic rats. Clinical and Experimental Pharmacology and Physiology, 36, 29–34. https://doi.org/10.1111/j.1440-1681.2008.05051.x
- Zheng, J. M., Zhu, J. M., Li, L. S., & Liu, Z. H. (2008). Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT 1) by inhibiting the hexosamine pathway. British Journal of Pharmacology, 153, 1456–1464. https://doi.org/10.1038/bjp.2008.26