Biological Activities of Xanthatin from Xanthium strumarium Leaves
Endalkachew Nibret
Institut für Pharmazie und Molekulare Biotechnologie (IPMB), Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
Search for more papers by this authorMahamoud Youns
Department of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
Search for more papers by this authorR. Luise Krauth-Siegel
Biochemie Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
Search for more papers by this authorCorresponding Author
Michael Wink
Institut für Pharmazie und Molekulare Biotechnologie (IPMB), Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
Professor Dr Michael Wink, Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
E-mail: [email protected]
Search for more papers by this authorEndalkachew Nibret
Institut für Pharmazie und Molekulare Biotechnologie (IPMB), Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
Search for more papers by this authorMahamoud Youns
Department of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
Search for more papers by this authorR. Luise Krauth-Siegel
Biochemie Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
Search for more papers by this authorCorresponding Author
Michael Wink
Institut für Pharmazie und Molekulare Biotechnologie (IPMB), Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
Professor Dr Michael Wink, Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
E-mail: [email protected]
Search for more papers by this authorAbstract
The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC50 value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE2 synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC50 values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE2 synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.
REFERENCES
- Abebe D, Debella A, Urga K. 2003. Illustrated Checklist: Medicinal Plants and Other Useful Plants of Ethiopia, 1st edn. Camerapix Publisher International: Singapore.
- Agata I, Goto S, Hatano T, Nishibe S, Okuda T. 1993. 1,3,5-Tri-O-caffeoylquinic acid from Xanthium strumarium. Phytochemistry 33: 508–509.
- Ali MS, Saleem M, Ahmad W, Parvez M, Yamdagni R. 2002. A chlorinated monoterpene ketone, acylated β-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry 59: 889–895.
- Bailly C, Henichart JP, Colson P, Houssier C. 1992. Drug-DNA sequence-dependent interactions analysed by electric linear dichroism. J Mol Recognit 5: 155–171.
- Baltz T, Baltz D, Giroud C, Crockett J. 1985. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4: 1273–1277.
- Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P. 2005. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 7: R422–R435.
- Burres NS, Frigo A, Rasmussen RR, McAlpine JB. 1992. A colorimetric microassay for the detection of agents that interact with DNA. J Nat Prod 55: 1582–1587.
- Cole RJ, Stuart BP, Lansden JA, Cox RH. 1980. Isolation and redefinition of the toxic agent from Cocklebur (Xanthium strumarium). J Agric Food Chem 28: 1330–1333.
- Favier LS, Maria AOM, Wendel GH, et al. 2005. Anti-ulcerogenic activity of xanthanolide sesquiterpenes from Xanthium cavanillesii in rats. J Ethnopharmacol 100: 260–267.
- Gautam R, Saklani A, Jachak SM. 2007. Indian medicinal plants as a source of antimycobacterial agents. J Ethnopharmacol 110: 200–234.
- Ginesta-Perls, E, Garcia-Breljo FJ, Primo-Yufera E. 1994. Antimicrobial activity of xanthatin from Xanthium spinosum L. Lett Appl Microbiol 18: 206–208.
- Gupta RA, Dubois RN. 2001. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1: 11–21.
- Han T, Li H, Zhang Q, Zheng H, Qin L. 2006. New thiazinediones and other components from Xanthium strumarium. Chem Nat Comp 42: 567–570.
- Howe LR. 2007. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9: 210–218.
- Huber W, Koella JC. 1993. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 55: 257–261.
- Jawad ALM, Mahmould MJ, Al-Naib A. 1988. Antimicrobial activity of Xanthium strumarium extracts. Fitoterapia 59: 220–221.
- Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL. 1989. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur J Biochem 180: 267–272.
- Joshi SP, Rojatkar SR, Nagasampagi BA. 1997. Antimalarial activity of Xanthium strumarium. J Med Arom Plant Sci 19: 366–368.
- Kawazu K, Kakajima S, Ariwa M. 1979. Xanthumin and 8-epi-xanthatin as insect development inhibitors from Xanthium canadense Mill. Experientia 35: 1294–1295.
- Kim YS, Kim JS, Park SH, et al. 2003. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase. Planta Med 69: 375–377.
- Krauth-Siegel RL, Bauer H, Schirmer RH. 2005. Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing Plasmodia. Angew Chem Int Ed 44: 690–715.
-
Kubata BK,
Duszenko M,
Kabututu Z, et al. 2000. Identification of a novel prostaglandin F2α synthase in Trypanosoma brucei. J Exp Med 192: 1327–1338.
10.1084/jem.192.9.1327 Google Scholar
- López-Antón N, Hermann C, Murillo R, et al. 2007. Sesquiterpene lactones induce distinct forms of cell death that modulate human monocyte-derived macrophage responses. Apoptosis 12: 141–153.
- Ma G, Chong L, Li Z, Cheung AHT, Tattersall MHN. 2009. Anticancer activities of sesquiterpene lactones from Cyathocline purpurea in vitro. Cancer Chemother Pharmacol 64: 143–152.
- Ma YT, Huang MC, Hsu FL, Chang HF. 1998. Thiazinedione from Xanthium strumarium. Phytochemistry 48: 1083–1085.
- Malik MS, Sangwan NK, Dhindsa KS. 1993. Xanthanolides from Xanthium strumarium. Phytochemistry 32: 206–207.
- Marco JA, Sanz-Cervera JF, Corral J, Card M, Jakupovic J. 1993. Xanthanolides from Xanthium: absolute configuration of xanthanol, isoxanthanol and their c-4 epimers. Phytochemistry 34: 1569–1576.
- Nibret E, Petros B, Mekonnen Y. 2007. Evaluation of the efficacy of traditionally used medicinal plant extracts against Trypanosoma congolense in vivo in mice. Ethiop Vet J 11: 151–162.
- Nibret E, Sporer F, Asres K, Wink M. 2009. Antitrypanosomal and cytotoxic activities of pyrrolizidine alkaloid-producing plants of Ethiopia. J Pharm Pharmacol 61: 801–808.
- Pentreath VW, Rees K, Owolabi OA, Philip KA, Doua F. 1990. The somnogenic T lymphocyte suppressor prostaglandin D2 is selectively elevated in cerebrospinal fluid of advanced sleeping sickness patients. Trans R Soc Trop Med Hyg 84: 795–799.
- Pinel B, Landreau A, Seraphin D, Larcher G, Bouchara JP, Richomme P. 2005. Synthesis of reduced xanthatin derivatives and in vitro evaluation of their antifungal activity. J Enzyme Inhib 20: 575–579.
- Ramírez-Erosa I, Huang Y, Hickie RA, Sutherland RG, Barl B. 2007. Xanthatin and xanthinosin from the burs of Xanthium strumarium L. as potential anticancer agents. Can J Physiol Pharmacol 85: 1160–1172.
- Rolón M, Vega C, Escario JA, Gómez-Barrio A. 2006. Development of resazurin microtiter assay for drug testing of Trypanosoma cruzi epimastigotes. Parasitol Res 99: 103–107.
- Rosenkranz V, Wink M. 2008. Alkaloids induce programmed cell death in bloodstream forms of trypanosomes (Trypanosoma b. brucei). Molecules 13: 2462–2473.
- Roussakis Ch, Chinou I, Vayas C, Harvala C, Verbist JF. 1994. Cytotoxic activity of xanthatin and the crude extracts of Xanthium strumarium. Planta Med 60: 473–474.
- Sullivan FX, Walsh CT. 1991. Cloning, sequencing, overproduction and purification of trypanothione reductase from Trypanosoma cruzi. Mol Biochem Parasitol 44: 145–147.
- Tadesse M. 2004. Asteraceae (Compositae). In Flora of Ethiopia and Eritrea, vol. 4 part 2, I Hedberg, I Friis, S Edwards (eds). National Herbarium, Addis Ababa University: Addis Ababa; Department of Systematic Botany, Uppsala University: Uppsala, 222–223.
- Talakal TS, Dwivedi SK, Sharma SR. 1995. In vitro and in vivo antitrypanosomal activity of Xanthium strumarium leaves. J Ethnopharmacol 49: 141–145.
- Tran QL, Tezuka Y, Ueda JY, et al. 2003. In vitro antiplasmodial activity of antimalarial medicinal plants used in Vietnamese traditional medicine. J Ethnopharmacol 86: 249–252.
- Wink M. 2001. Secondary Metabolites: Deterring Herbivores. Encyclopedia of Life Sciences. Nature Publishing Group: New York; 1–9.
- Wink M. 2006. Importance of plant secondary metabolites for protection against insects and microbial infections. In Naturally Occurring Bioactive Compounds, Rai and Carpinella (eds). Elsevier B.V.: Amsterdam, 251–268.
- Wink M. 2007. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. In The Alkaloids, vol. 64, GA Cordell (ed.). Elsevier: Amsterdam, 1–47.
- Wink M. 2008. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr Drug Metab 9: 996–1009.
- Wink M, Schmeller T, Latz-Brüning B. 1998. Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 24: 1881–1937.
- Wondimu T, Asfaw Z, Kelbessa E. 2007. Ethnobotanical study of medicinal plants around ‘Dheeraa’ town, Arsi Zone, Ethiopia. J Ethnopharmacol 112: 152–161.
- Yin MH, Kang DG, Choi DH, Kwon TO, Lee HS. 2005. Screening of vasorelaxant activity of some medicinal plants used in Oriental medicines. J Ethnopharmacol 99: 113–117.
- Youns M, Efferth T, Reichling J, Fellenberg K, Bauer A, Hoheisel JD. 2009. Gene expression profiling identifies novel key players involved in the cytotoxic effect of Artesunate on pancreatic cancer cells. Biochem Pharmacol 78: 273–283.
- Zhang S, Won YK, Ong CN, Shen HM. 2005. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Anticancer Agents Med Chem 5: 239–249.