Modeling Filamentary Conduction in Reset Phase Change Memory Devices
Md Samzid Bin Hafiz
Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157 USA
Search for more papers by this authorHelena Silva
Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157 USA
Search for more papers by this authorCorresponding Author
Ali Gokirmak
Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157 USA
Search for more papers by this authorMd Samzid Bin Hafiz
Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157 USA
Search for more papers by this authorHelena Silva
Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157 USA
Search for more papers by this authorCorresponding Author
Ali Gokirmak
Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157 USA
Search for more papers by this authorAbstract
A computational analysis is performed on percolation transport and filament formation in amorphous Ge2Sb2Te5 (a-GST) using 2D finite element multiphysics simulations with 2 nm out-of-plane depth using an electric field and temperature-dependent electronic transport model with carrier activation energies that vary locally around 0.3 eV and as a function of temperature. The snapback (threshold switching) behavior in the current–voltage (I–V) characteristics at ≈50 MV m−1 electric field with 0.63 μA current for 300 K ambient temperature, where current collapses onto a single molten filament with ≈2 nm diameter, aligned with the electric field, and the device switches from a high-resistance state (108 Ω) to a low-resistance state (103 Ω) is observed. Further increase in voltage across the device leads to widening of the molten filament. Snapback current and electric field are strong functions of ambient temperature, ranging from ≈0.53 μA at 200 K to ≈16.93 μA at 800 K and ≈85 MV m−1 at 150 K to 45 MV m−1 at 350 K, respectively. Snapback electric field decreases exponentially with increasing device length, converging to ≈38 MV m−1 for devices longer than 200 nm.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 M. Gu, Q. Zhang, S. Lamon, Nat. Rev. Mater. 2016, 1, 1.
- 2 W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 2019, 4, 150.
- 3 D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Nature 2017, 354, 24270.
- 4 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Nature 2016, 529, 484.
- 5
M. K. Qureshi, V. Srinivasan, J. A. Rivers, in Proc. Int. Symp. Comput. Archit. Austin, TX 2009, pp. 24–33, https://doi.org/10.1145/1555754.1555760.
10.1145/1555754.1555760 Google Scholar
- 6 G. C. Han, J. J. Qiu, L. Wang, W. K. Yeo, C. C. Wang, IEEE Trans. Magn. 2010, 46, 709.
- 7 H. S. P. Wong, S. Salahuddin, Nat. Nanotechnol. 2015, 10, 191.
- 8 M. Wuttig, N. Yamada, Nat. Mater. 2007, 6, 824.
- 9 R. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
- 10 A. D. Kent, D. C. Worledge, Nat. Nanotechnol. 2015, 10, 187.
- 11 J. F. Scott, C. A. Paz De Araujo, Science 1989, 246, 1400.
- 12 F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng.: R: Rep. 2014, 83, 1.
- 13 S. W. Fong, C. M. Neumann, H. S. P. Wong, IEEE Trans. Electron Devices 2017, 64, 4374.
- 14 G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, R. S. Shenoy, IBM J. Res. Dev. 2008, 52, 449.
- 15 M. Le Gallo, A. Sebastian, J. Phys. D Appl. Phys. 2020, 53, 213002.
- 16 S. Raoux, F. Xiong, M. Wuttig, E. Pop, MRS Bull. 2014, 39, 703.
- 17 G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R. S. Shenoy, J. Vac. Sci. Technol. B 2010, 28, 223.
- 18 L. Wang, L. Tu, J. Wen, Sci. Technol. Adv. Mater. 2017, 18, 406.
- 19 M. Chen, K. A. Rubin, R. W. Barton, Appl. Phys. Lett. 1986, 49, 502.
- 20 N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, Jpn. J. Appl. Phys. 1987, 26, 61.
- 21 N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 1991, 69, 2849.
- 22 J. L. F. Da Silva, A. Walsh, H. Lee, Phys. Rev. B 2008, 78, 224111.
- 23
D. Ielmini, in Phase Change Memory: Device Physics, Reliability and Applications, Springer, Cham, Switzerland 2018, p. 11–39.
10.1007/978-3-319-69053-7_2 Google Scholar
- 24
V. Sousa, G. Navarro, in Phase Change Memory: Device Physics, Reliability and Applications, Springer, Cham, Switzerland 2018, pp. 181–222.
10.1007/978-3-319-69053-7_7 Google Scholar
- 25 K. Cil, F. Dirisaglik, L. Adnane, M. Wennberg, A. King, A. Faraclas, M. B. Akbulut, Y. Zhu, C. Lam, A. Gokirmak, H. Silva, IEEE Trans Electron Devices 2013, 60, 433.
- 26 M. Xu, Y. Q. Cheng, L. Wang, H. W. Sheng, Y. Meng, W. G. Yang, X. D. H, an, E. Ma, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E1055.
- 27 N. Ohshima, JAP 1996, 79, 8357.
- 28 H. K. Peng, K. Cil, A. Gokirmak, G. Bakan, Y. Zhu, C. S. Lai, C. H. Lam, H. Silva, Thin Solid Films 2012, 520, 2976.
- 29 A. Faraclas, G. Bakan, L. Adnane, F. Dirisaglik, N. E. Williams, A. Gokirmak, H. Silva, IEEE Trans Electron Devices 2014, 61, 372.
- 30 T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 2011, 10, 202.
- 31 L. Adnane, F. Dirisaglik, A. Cywar, K. Cil, Y. Zhu, C. Lam, A. F. M. Anwar, A. Gokirmak, H. Silva, J. Appl. Phys. 2017, 122, 125104.
- 32 F. Dirisaglik, G. Bakan, Z. Jurado, S. Muneer, M. Akbulut, J. Rarey, L. Sullivan, M. Wennberg, A. King, L. Zhang, R. Nowak, C. Lam, H. Silva, A. Gokirmak, Nanoscale 2015, 7, 16625.
- 33 A. Redaelli, in Phase Change Memory: Device Physics, Reliability and Applications, Springer, Cham, Switzerland 2017, pp. 1–330.
- 34
S. R. Ovshinsky, J. Non. Cryst. Solids 1970, 2, 99.
10.1016/0022-3093(70)90125-0 Google Scholar
- 35 A. Faraclas, N. Williams, A. Gokirmak, H. Silva, IEEE Electron Device Lett. 2011, 32, 1737.
- 36 A. Faraclas, N. Williams, F. Dirisaglik, K. Cil, A. Gokirmak, H. Silva, in Proceedings - 2012 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2012, IEEE, Piscataway, NJ 2012, pp. 78–83.
- 37 G. Bakan, B. Gerislioglu, F. Dirisaglik, Z. Jurado, L. Sullivan, A. Dana, C. Lam, A. Gokirmak, H. Silva, J. Appl. Phys. 2016, 120, 164504.
- 38 J. Scoggin, Z. Woods, H. Silva, A. Gokirmak, Appl. Phys. Lett. 2019, 114, 043502.
- 39 J. Scoggin, R. S. Khan, H. Silva, A. Gokirmak, Appl. Phys. Lett. 2018, 112, 193502.
- 40 Z. Woods, J. Scoggin, A. Cywar, L. Adnane, A. Gokirmak, IEEE Trans Electron Devices 2017, 64, 4472.
- 41 Z. Woods, A. Gokirmak, IEEE Trans Electron Devices 2017, 64, 4466.
- 42 G. Bakan, N. Khan, H. Silva, A. Gokirmak, Sci. Rep. 2013, 3, 2724.
- 43COMSOL 6.2-COMSOL Multiphysics Reference Manual, https://doc.comsol.com/6.2/doc/com.comsol.help.comsol/html_COMSOL_ReferenceManual.html (accessed: November 2024).
- 44 R. S. Khan, A. H. Talukder, F. Dirisaglik, H. Silva, A. Gokirmak, Accelerating and Stopping Resistance Drift in Phase Change Memory Cells via High Electric Field Stress, arXiv:2002.12487 2020.
- 45 R. S. Khan, A. B. M. H. Talukder, F. Dirisaglik, A. Gokirmak, H. Silva, in 2020 Device Research Conf. (DRC), IEEE, Ohio 2020, pp. 1–2.
- 46 S. Muneer, J. Scoggin, F. Dirisaglik, L. Adnane, A. Cywar, G. Bakan, K. Cil, C. Lam, H. Silva, A. Gokirmak, AIP Adv. 2018, 8, 065314.
- 47 A. Talukder, M. Kashem, M. Hafiz, R. Khan, F. Dirisaglik, H. Silva, A. Gokirmak, Appl. Phys. Lett. 2024, 124.
- 48 T. Kato, K. Tanaka, Jpn. J. Appl. Phys. 2005, 44, 7340.
- 49 B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, J. Appl. Phys. 2005, 97, 093509.
- 50 H. Tong, Z. Yang, N. N. Yu, L. J. Zhou, X. S. Miao, Appl. Phys. Lett. 2015, 107, 82101.
- 51 C. Liu, Y. Wang, J. Liu, R. Ma, H. Liu, Q. Wang, Y. Fu, Q. Liu, D. He, Commun. Phys. 2024, 7, 1.
- 52
K. Konstantinou, S. R. Elliott, Phys. Status Solidi RRL 2023, 17, 202200496.
10.1002/pssr.202200496 Google Scholar
- 53 K. Konstantinou, S. R. Elliott, J. Akola, J. Mater. Chem. C Mater. 2022, 10, 6744.
- 54 K. Konstantinou, F. C. Mocanu, J. Akola, S. R. Elliott, Acta Mater. 2022, 223, 117465.
- 55 X. Yang, W. Liu, M. De Bastiani, T. Allen, J. Kang, H. Xu, E. Aydin, L. Xu, Q. Bi, H. Dang, E. AlHabshi, K. Kotsovos, A. AlSaggaf, I. Gereige, Y. Wan, J. Peng, C. Samundsett, A. Cuevas, S. De Wolf, Joule 2019, 3, 1314.
- 56
D. Ielmini, Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 035308.
10.1103/PhysRevB.78.035308 Google Scholar
- 57
M. T. Bin Kashem, J. Scoggin, H. Silva, A. Gokirmak, ECS Trans. 2022, 108, 3.
10.1149/10801.0003ecst Google Scholar
- 58 L. Adnane, N. Williams, H. Silva, A. Gokirmak, Rev. Sci. Instrum. 2015, 86, 105119.
- 59 M. Tashfiq, B. Kashem, R. Sayeed Khan, A. Hasan Talukder, F. Dirisaglik, A. Gokirmak, Stopping Resistance Drift in Phase Change Memory Cells and Analysis of Charge Transport in Stable Amorphous Ge2Sb2Te5, arXiv: 2210.14035 2022, (accessed: January 2025).
- 60 J. L. Lin, S. C. Lee, J. Chin. Ins. Eng. 1995, 18, 451.
- 61
J. Becker, E. Fretwurst, R. Klanner, Solid State Electron. 2010, 56, 104.
10.1016/j.sse.2010.10.009 Google Scholar
- 62 P. M. Smith, M. Inoue, J. Frey, Appl. Phys. Lett. 1980, 37, 797.
- 63 A. Cywar, J. Li, C. Lam, H. Silva, Nanotechnology 2012, 23, 225201.
- 64
R. R. Shanks, J. Non. Cryst. Solids 1970, 2, 504.
10.1016/0022-3093(70)90164-X Google Scholar
- 65 J. Scoggin, A. Gokirmak, R. S. Khan, Z. Woods, A. Cywar, L. Adnane, S. Muneer, G. Bakan, F. Dirisaglik, H. Silva, in Nonvolatile Memory Technology Symposium (NVMTS), North Carolina, USA 2019.
- 66 W. Czubatyj, S. J. Hudgens, Electron. Mater. Lett. 2012, 8, 157.
- 67 J. Scoggin, H. Silva, A. Gokirmak, J. Appl. Phys. 2020, 128, 234503.
- 68 M. P. West, G. Pavlidis, R. H. Montgomery, F. F. Athena, M. S. Jamil, A. Centrone, S. Graham, E. M. Vogel, J. Appl. Phys. 2023, 133, 0145201.
- 69 J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, Nat. Nanotechnol. 2008, 3, 429.
- 70 J. Dallas, G. Pavlidis, B. Chatterjee, J. S. Lundh, M. Ji, J. Kim, T. Kao, T. Detchprohm, R. D. Dupuis, S. Shen, S. Graham, S. Choi, Appl. Phys. Lett. 2018, 112, 073503.
- 71 A. Deschenes, S. Muneer, M. Akbulut, A. Gokirmak, H. Silva, Beilstein J. Nanotechnol. 2016, 7, 1676.
- 72 B. D. Josephson, Phys. Lett. 1962, 1, 251.