Ab Initio Investigation of Amorphous and Crystalline Arsenic Sesqui-Chalcogenides: Optical Properties Explained by Metavalent Bonding
Ruixuan Chu
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorXueyang Shen
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorJiayue Wang
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorSuyang Sun
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Institute of Materials, Henan Academy of Sciences, Zhengzhou, 450046 China
Search for more papers by this authorMatthias Wuttig
Institute of Physics IA, JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Search for more papers by this authorCorresponding Author
Riccardo Mazzarello
Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
Search for more papers by this authorCorresponding Author
Wei Zhang
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorRuixuan Chu
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorXueyang Shen
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorJiayue Wang
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorSuyang Sun
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Institute of Materials, Henan Academy of Sciences, Zhengzhou, 450046 China
Search for more papers by this authorMatthias Wuttig
Institute of Physics IA, JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Search for more papers by this authorCorresponding Author
Riccardo Mazzarello
Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
Search for more papers by this authorCorresponding Author
Wei Zhang
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorAbstract
Phase-change materials (PCMs) are employed in both electrical and optical devices exploiting the property contrast between their amorphous and crystalline states. Binary antimony sesqui-chalcogenides such as Sb2Se3 and Sb2S3 are recently shown to be suitable PCMs for low-loss optical applications. In this work, ab initio simulations of arsenic sesqui-chalcogenides are carried out, including As2S3, As2Se3, and As2Te3 to unravel the bonding and optical properties of their crystalline and amorphous phases. Due to the metavalent character of its chemical bonds, crystalline As2Te3 shows a high optical response. However, in crystalline As2S3 and As2Se3, the alignment of p orbitals is fully broken, which results in a very low-extinction coefficient that is already comparable to their amorphous phase. Although As2S3 and As2Se3 display good low-loss optical properties, the overall optical contrast upon phase transition is not sufficient for practical applications. Therefore, it is concluded that arsenic is a useful alloying element in reducing the optical loss of conventional PCMs, but its concentration should be kept at a relatively low level to balance the optical loss and contrast window.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in [CAID Repository] at [https://caid.xjtu.edu.cn/info/1003/1861.htm], reference number [1861].
Supporting Information
Filename | Description |
---|---|
pssr202400311-sup-0001-SuppData-S1.pdf337.7 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Wuttig, N. Yamada, Nat. Mater. 2007, 6, 824.
- 2 W. Zhang, E. Ma, Mater. Today 2020, 41, 156.
- 3 S. Raoux, W. Wełnic, D. Ielmini, Chem. Rev. 2010, 110, 240.
- 4 A. Sebastian, M. Le Gallo, G. W. Burr, S. Kim, M. BrightSky, E. Eleftheriou, J. Appl. Phys. 2018, 124, 111101.
- 5 L. He, X. Li, C. Xie, Z. Song, Sci. China Inf. Sci. 2023, 66, 200402.
- 6 Y. Zhou, W. Zhang, E. Ma, V. L. Deringer, Nat. Electron. 2023, 6, 746.
- 7 S. Sun, X. Wang, Y. Jiang, Y. Lei, S. Zhang, S. Kumar, J. Zhang, E. Ma, R. Mazzarello, J.-J. Wang, W. Zhang, npj Comput. Mater. 2024, 10, 189.
- 8 B. Liu, K. Li, J. Zhou, Z. Sun, Adv. Funct. Mater. 2024, 34, 2407239.
- 9 X. Li, N. Chen, B. Wang, M. Niu, M. Xu, X. Miao, X. Li, Adv. Mater. 2024, 36, 2307951.
- 10 M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, A. Sebastian, Nat. Mater. 2018, 17, 681.
- 11 W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 2019, 4, 150.
- 12 A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Nat. Nanotechnol. 2020, 15, 529.
- 13 S. Xueyang, C. Ruixuan, J. Yihui, Z. Wei, Acta Metall. Sin. 2024, 60, 1362.
- 14 X. Shen, S. Zhang, Y. Jiang, T. Huang, S. Sun, W. Zhou, J. Wang, R. Mazzarello, W. Zhang, MGE Adv. 2024, 2, e62.
- 15 M. Wuttig, H. Bhaskaran, T. Taubner, Nat. Photonics 2017, 11, 465.
- 16 C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, W. H. P. Pernice, Nat. Photonics 2015, 9, 725.
- 17 W. Zhang, R. Mazzarello, E. Ma, MRS Bull. 2019, 44, 686.
- 18 M. Lanza, A. Sebastian, W. D. Lu, M. Le Gallo, M.-F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, J. B. Roldan, Science 2022, 376, eabj9979.
- 19 Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia, J. J. Yang, Nat. Rev. Mater. 2020, 5, 173.
- 20 M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, X. Miao, Adv. Funct. Mater. 2020, 30, 2003419.
- 21 M. Le Gallo, C. Lammie, J. Büchel, F. Carta, O. Fagbohungbe, C. Mackin, H. Tsai, V. Narayanan, A. Sebastian, K. El Maghraoui, M. J. Rasch, APL Mach. Learn. 2023, 1, 041102.
- 22 W. Zhou, X. Shen, X. Yang, J. Wang, W. Zhang, Int. J. Extreme Manuf. 2024, 6, 022001.
- 23 A. Lotnyk, M. Behrens, B. Rauschenbach, Nanoscale Adv. 2019, 1, 3836.
- 24 H. Bryja, J. W. Gerlach, A. Prager, M. Ehrhardt, B. Rauschenbach, A. Lotnyk, 2D Mater. 2021, 8, 045027.
- 25 K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 2008, 7, 653.
- 26 B. J. Kooi, M. Wuttig, Adv. Mater. 2020, 32, 1908302.
- 27 M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J. Raty, Adv. Mater. 2018, 30, 1803777.
- 28 J. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 2019, 31, 1806280.
- 29 M. Wuttig, C. Schön, J. Lötfering, P. Golub, C. Gatti, J. Raty, Adv. Mater. 2023, 35, 2208485.
- 30 L. Guarneri, S. Jakobs, A. Von Hoegen, S. Maier, M. Xu, M. Zhu, S. Wahl, C. Teichrib, Y. Zhou, O. Cojocaru-Mirédin, M. Raghuwanshi, C. Schön, M. Drögeler, C. Stampfer, R. P. S. M. Lobo, A. Piarristeguy, A. Pradel, J. Raty, M. Wuttig, Adv. Mater. 2021, 33, 2102356.
- 31 M. Zhu, O. Cojocaru-Mirédin, A. M. Mio, J. Keutgen, M. Küpers, Y. Yu, J. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 2018, 30, 1706735.
- 32 Y. Cheng, O. Cojocaru-Mirédin, J. Keutgen, Y. Yu, M. Küpers, M. Schumacher, P. Golub, J. Raty, R. Dronskowski, M. Wuttig, Adv. Mater. 2019, 31, 1904316.
- 33 O. Cojocaru-Mirédin, Y. Yu, J. Köttgen, T. Ghosh, C.-F. Schön, S. Han, C. Zhou, M. Wuttig, Adv. Mater. 2024, e2403046. https://doi.org/10.1002/adma.202403046n.d.
- 34 J.-Y. Raty, C. Bichara, C.-F. Schön, C. Gatti, M. Wuttig, Proc. Natl. Acad. Sci. 2024, 121, e2316498121.
- 35 J.-Y. Raty, C. Bichara, C.-F. Schön, C. Gatti, M. Wuttig, Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2405294121.
- 36 M. Chen, K. A. Rubin, R. W. Barton, Appl. Phys. Lett. 1986, 49, 502.
- 37 L. Van Pieterson, M. H. R. Lankhorst, M. Van Schijndel, A. E. T. Kuiper, J. H. J. Roosen, J. Appl. Phys. 2005, 97, 083520.
- 38 N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 1991, 69, 2849.
- 39 P. Cappelletti, R. Annunziata, F. Arnaud, F. Disegni, A. Maurelli, P. Zuliani, J. Phys. D: Appl. Phys. 2020, 53, 193002.
- 40 L. Sun, Y.-X. Zhou, X.-D. Wang, Y.-H. Chen, V. L. Deringer, R. Mazzarello, W. Zhang, npj Comput. Mater. 2021, 7, 29.
- 41 D. Porezag, Th Frauenheim, Th Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 1995, 51, 12947.
- 42 A. Kumar, Z. A. Ali, B. M. Wong, J. Mater. Sci. Technol. 2023, 141, 236.
- 43 M. B. Oviedo, F. Fernandez, M. Otero, E. P. M. Leiva, S. A. Paz, J. Phys. Chem. A 2023, 127, 2637.
- 44 N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, Jpn. J. Appl. Phys. 1987, 26, 61.
- 45 B. J. Shastri, A. N. Tait, T. Ferreira De Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal, Nat. Photonics 2021, 15, 102.
- 46 D. Wang, L. Zhao, S. Yu, X. Shen, J.-J. Wang, C. Hu, W. Zhou, W. Zhang, Mater. Today 2023, 68, 334.
- 47 Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu, Opt. Lett. 2018, 43, 94.
- 48 Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, J. Hu, Nat. Commun. 2019, 10, 4279.
- 49 H. Zhang, X. Wang, W. Zhang, Opt. Mater. Express 2022, 12, 2497.
- 50 W. Jiang, Sci. Rep. 2018, 8, 15946.
- 51 N. Dhingra, J. Song, G. J. Saxena, E. K. Sharma, B. M. A. Rahman, IEEE Photonics Technol. Lett. 2019, 31, 1757.
- 52 M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, O. L. Muskens, Adv. Funct. Mater. 2020, 30, 2002447.
- 53 M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, O. L. Muskens, Sci. Adv. 2021, 7, eabg3500.
- 54 M. Xu, R. Gu, C. Qiao, H. Tong, X. Cheng, C.-Z. Wang, K.-M. Ho, S. Wang, X. Miao, M. Xu, J. Mater. Chem. C 2021, 9, 8057.
- 55 Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, A. Majumdar, Adv. Opt. Mater. 2021, 9, 2002049.
- 56 K. V. Sreekanth, Q. Ouyang, S. Sreejith, S. Zeng, W. Lishu, E. Ilker, W. Dong, M. ElKabbash, Y. Ting, C. T. Lim, M. Hinczewski, G. Strangi, K. Yong, R. E. Simpson, R. Singh, Adv. Opt. Mater. 2019, 7, 1900081.
- 57 W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, R. E. Simpson, Adv. Funct. Mater. 2019, 29, 1806181.
- 58 W. Zhang, H. Zhang, S. Sun, X. Wang, Z. Lu, X. Wang, J. Wang, C. Jia, C. Schön, R. Mazzarello, E. Ma, M. Wuttig, Adv. Sci. 2023, 10, 2300901.
- 59 J. Lee, Y. I. Jhon, K. Lee, Y. M. Jhon, J. H. Lee, Sci. Rep. 2020, 10, 15305.
- 60 G. J. Carron, Acta Crystallogr. 1963, 16, 338.
- 61
A. A. Vaipolin, J. Struct. Chem. 1970, 11, 443.
10.1007/BF00744710 Google Scholar
- 62 O. Cojocaru-Mirédin, Y. Yu, J. Köttgen, T. Ghosh, C.-F. Schön, S. Han, C. Zhou, M. Wuttig, Adv. Mater. 2024, 36, 2403046.
- 63 S. Sun, L. Zhu, W. Zhang, Phys. Status Solidi RRL 2022, 16, 2100626.
- 64 M. Esser, V. L. Deringer, M. Wuttig, R. Dronskowski, Solid State Commun. 2015, 203, 31.
- 65 J. C. Slater, J. Chem. Phys. 1964, 41, 3199.
- 66 P. Knotek, P. Kutálek, E. Černošková, M. Vlček, L. Tichý, RSC Adv. 2020, 10, 42744.
- 67 J. Cornet, D. Rossier, J. Non-Cryst. Solids 1973, 12, 61.
- 68 V. L. Deringer, W. Zhang, M. Lumeij, S. Maintz, M. Wuttig, R. Mazzarello, R. Dronskowski, Angew. Chem., Int. Ed. 2014, 53, 10817.
- 69 Y. Chen, L. Sun, Y. Zhou, G. M. Zewdie, V. L. Deringer, R. Mazzarello, W. Zhang, J. Mater. Chem. C 2020, 8, 71.
- 70 S. Ahmed, X. Wang, H. Li, Y. Zhou, Y. Chen, L. Sun, W. Zhang, R. Mazzarello, Phys. Status Solidi RRL 2021, 15, 2100064.
- 71 X. Wang, X. Shen, S. Sun, W. Zhang, Nanomaterials 2021, 11, 3029.
- 72 W. Wełnic, S. Botti, L. Reining, M. Wuttig, Phys. Rev. Lett. 2007, 98, 236403.
- 73 X. Wang, Y. Wu, Y. Zhou, V. L. Deringer, W. Zhang, Mater. Sci. Semicond. Process. 2021, 135, 106080.
- 74 S. Ahmed, X.-D. Wang, Y.-X. Zhou, L. Sun, R. Mazzarello, W. Zhang, J. Phys.: Photonics 2021, 3, 034011.
- 75 V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
- 76 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 77 G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 78 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 79 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 80 T. Hughbanks, R. Hoffmann, J. Am. Chem. Soc. 1983, 105, 3528.
- 81 S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030.
- 82 R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, R. Dronskowski, J. Comput. Chem. 2020, 41, 1931.
- 83 S. Nosé, J. Chem. Phys. 1984, 81, 511.
- 84 W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
- 85 S. Le Roux, P. Jund, Comput. Mater. Sci. 2010, 49, 70.
- 86 P. Giannozzi, S. Baroni, N. Bonini, M., R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys.: Condens. Matter 2009, 21, 395502.
- 87 A. Otero-de-la-Roza, E. R. Johnson, V. Luaña, Comput. Phys. Commun. 2014, 185, 1007.