Enhanced Resonant Energy Transfer by Decorating Au Nanoparticles on the Sidewalls of InGaN Multiple-Quantum-Well Nanorods
Yimeng Sang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Zhe Zhuang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Suzhou Campus, Nanjing University, Suzhou, 215011 P. R. China
Search for more papers by this authorCorresponding Author
Tao Tao
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorDongqi Zhang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorKai Chen
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorTing Zhi
College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210093 P. R. China
Search for more papers by this authorZili Xie
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Bin Liu
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorRong Zhang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYimeng Sang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Zhe Zhuang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Suzhou Campus, Nanjing University, Suzhou, 215011 P. R. China
Search for more papers by this authorCorresponding Author
Tao Tao
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorDongqi Zhang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorKai Chen
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorTing Zhi
College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210093 P. R. China
Search for more papers by this authorZili Xie
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Bin Liu
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorRong Zhang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 P. R. China
Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorAbstract
An enhanced resonant energy transfer (RET) process between green InGaN multiple quantum wells (MQWs) and CdSe/ZnS quantum dots (QDs) is investigated by decorating the sidewalls of InGaN MQW nanorods with Au nanoparticles. The InGaN MQW nanorods are shallow-etched to the region of InGaN MQWs or deep-etched through InGaN MQWs completely. The Au nanoparticles can provide localized surface plasmon coupling to both InGaN MQWs and QDs, leading to accelerated decay rates. The localized surface plasmons also enhance the RET process between InGaN MQWs and QDs. Compared to the bare nanorods without Au nanoparticles, the enhancement factors of the RET process are 1.8 and 5.6 for shallow- and deep-etched MQW nanorods, respectively. The larger enhancement factor for deep-etched nanorods is mainly attributed to the weaker localized surface plasmon coupling with InGaN MQWs, which is proposed to compete with the RET process. The RET efficiency in the deep-etched InGaN MQW nanorods is calculated as 62%, demonstrating high potential for usage in energy conversion devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Phys. Rev. Lett. 1996, 76, 1517.
- 2 M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, V. I. Klimov, Nature 2004, 429, 642.
- 3 M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, V. I. Klimov, Nano Lett. 2006, 6, 1396.
- 4 S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. Charlton, D. V. Talapin, H. W. Huang, C. H. Lin, Adv. Mater. 2010, 22, 602.
- 5 K. F. Chou, A. M. Dennis, Sensors 2015, 15, 13288.
- 6 A. Raja, A. Montoya-Castillo, J. Zultak, X. X. Zhang, Z. L. Ye, C. Roquelet, D. A. Chenet, A. M. van der Zande, P. Huang, S. Jockusch, J. Hone, D. R. Reichman, L. E. Brus, T. F. Heinz, Nano Lett. 2016, 16, 2328.
- 7 R. M. Smith, B. Liu, J. Bai, T. Wang, Appl. Phys. Lett. 2014, 105, 171111.
- 8 R. Smith, B. Liu, J. Bai, T. Wang, Nano Lett. 2013, 13, 3042.
- 9 M. Athanasiou, R. M. Smith, S. Ghataora, T. Wang, Sci. Rep. 2017, 7, 39677.
- 10 A. A. Kasprzak, Methods Mol. Biol. 2007, 392, 183.
- 11 Z. Zhuang, J. Dai, B. Liu, X. Guo, Y. Li, T. Tao, T. Zhi, G. Zhang, Z. Xie, H. Ge, Y. Shi, Y. Zheng, R. Zhang, Appl. Phys. Lett. 2016, 109, 141105.
- 12 Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, R. Zhang, Adv. Funct. Mater. 2016, 26, 36.
- 13 S. Ghataora, R. M. Smith, M. Athanasiou, T. Wang, ACS Photonics 2018, 5, 642.
- 14 Y.-M. Huang, K. J. Singh, A.-C. Liu, C.-C. Lin, Z. Chen, K. Wang, Y. Lin, Z. Liu, T. Wu, H.-C. Kuo, Nanomaterials 2020, 10, 1327.
- 15 S.-W. H. Chen, C.-C. Shen, T. Wu, Z.-Y. Liao, L.-F. Chen, J.-R. Zhou, C.-F. Lee, C.-H. Lin, C.-C. Lin, C.-W. Sher, P.-T. Lee, A.-J. Tzou, Z. Chen, H.-C. Kuo, Photonics Res. 2019, 7, 416.
- 16 S.-W. Huang Chen, C.-C. Shen, T. Wu, Z.-Y. Liao, L.-F. Chen, J.-R. Zhou, C.-F. Lee, C.-H. Lin, C.-C. Lin, C.-W. Sher, P.-T. Lee, A.-J. Tzou, Z. Chen, H.-C. Kuo, Photonics Res. 2019, 7, 416.
- 17 S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, P. G. Lagoudakis, Phys. Rev. Lett. 2009, 102, 077402.
- 18 M. Lunz, X. Zhang, V. A. Gerard, Y. K. Gun'ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, A. L. Bradley, J. Phys. Chem. C 2012, 116, 26529.
- 19
S. M. Sadeghi, B. Hood, A. Nejat, R. G. West, A. Hatef, J. Phys. D Appl. Phys. 2014, 47, 165302.
10.1088/0022-3727/47/16/165302 Google Scholar
- 20 J. Zhang, Y. Fu, M. H. Chowdhury, J. R. Lakowicz, Nano Lett. 2007, 7, 2101.
- 21 M. Lessard-Viger, M. Rioux, L. Rainville, D. Boudreau, Nano Lett. 2009, 9, 3066.
- 22 L. J. Higgins, V. D. Karanikolas, C. A. Marocico, A. P. Bell, T. C. Sadler, P. J. Parbrook, A. L. Bradley, Opt. Express 2015, 23, 1377.
- 23 X. Zhao, P. Wang, B. Li, Nanoscale 2011, 3, 3056.
- 24 J. de Torres, P. Ferrand, G. C. des Francs, J. Wenger, ACS Nano 2016, 10, 3968.
- 25 G. P. Murphy, J. J. Gough, L. J. Higgins, V. D. Karanikolas, K. M. Wilson, J. A. Garcia Coindreau, V. Z. Zubialevich, P. J. Parbrook, A. L. Bradley, Nanotechnology 2017, 28, 115401.
- 26 M. Li, S. K. Cushing, Q. Wang, X. Shi, L. A. Hornak, Z. Hong, N. Wu, J. Phys. Chem. Lett. 2011, 2, 2125.
- 27 X. Zhang, C. Marocico, M. Lunz, V. Gerard, Y. Gun'ko, V. Lesnyak, N. Gaponik, A. Susha, A. Rogach, L. Bradley, ACS Nano 2012, 6, 9283.
- 28 T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. O. Ozel, Q. Zhang, Q. H. Xiong, H. V. Demir, Nano Lett. 2013, 13, 3065.
- 29 X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun'ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, A. L. Bradley, ACS Nano 2014, 8, 1273.
- 30 Y.-P. Chen, C.-C. Ni, R.-N. Wu, S.-Y. Kuo, Y.-C. Su, Y.-Y. Huang, J.-W. Chen, Y.-C. Hsu, S.-H. Wu, C.-Y. Chen, P.-H. Wu, Y.-W. Kiang, C. C. Yang, Nanotechnology 2021, 32, 135206.
- 31 L. J. Higgins, C. A. Marocico, V. D. Karanikolas, A. P. Bell, J. J. Gough, G. P. Murphy, P. J. Parbrook, A. L. Bradley, Nanoscale 2016, 8, 18170.
- 32 Z. Zhuang, C. Li, Y. Zhang, B. Liu, X. Zhang, A. Fan, S. Chen, L. Lu, Y. Cui, Appl. Phys. Lett. 2021, 118, 202103.
- 33 R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, L. Wang, Photonics Res. 2021, 9, 1213.
- 34 Z. Zhuang, X. Guo, G. Zhang, B. Liu, T. Zhi, T. Tao, H. Ge, F.-F. Ren, Z. Xie, Y. Zheng, Nanotechnology 2013, 24, 405303.
- 35 P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, J. Li, Opt. Express 2014, 22, A320.
- 36 W.-H. Chuang, J.-Y. Wang, C. C. Yang, Y.-W. Kiang, Opt. Express 2009, 17, 104.
- 37 Y.-T. Wang, R.-N. Wu, C.-C. Ni, C.-C. Lu, C.-J. Cai, W. F. Tse, W.-Y. Chang, Y. Kuo, Y.-W. Kiang, C. C. Yang, Opt. Express 2020, 28, 13352.