Characterizations of Subbandgap Optical Absorption in Undoped-GaN and 90 nm-Thick Al1−xInxN Thin Film on Sapphire Substrates Grown by Metal–Organic Chemical Vapor Deposition
Kouki Noda
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorYuto Murakami
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorHayata Toyoda
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorKana Shibata
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorYouna Tsukada
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorCorresponding Author
Daichi Imai
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorTetsuya Takeuchi
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorMakoto Miyoshi
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 Japan
Search for more papers by this authorTakao Miyajima
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorKouki Noda
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorYuto Murakami
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorHayata Toyoda
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorKana Shibata
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorYouna Tsukada
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorCorresponding Author
Daichi Imai
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorTetsuya Takeuchi
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorMakoto Miyoshi
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 Japan
Search for more papers by this authorTakao Miyajima
Faculty of Science and Technology, Meijo University, Shiogamacuchi, Tempaku-ku, Nagoya, 468-8502 Japan
Search for more papers by this authorAbstract
Subbandgap optical absorption (SOA) in undoped GaN and 90 nm-thick Al1−xInxN thin films grown on sapphire substrates is investigated using photothermal deflection spectroscopy (PDS) and photoluminescence (PL). An Al1−xInxN alloy (x = 0.17) is grown on a GaN/sapphire template by metal–organic chemical vapor deposition (MOCVD), and the SOA is observed using PDS. To develop an estimation method for the absorption coefficient (α) of SOA in GaN and Al1−xInxN thin films, the use of a thick GaN substrate is proposed, which is grown by hydride vapor-phase epitaxy, as a converter of the PDS signal intensity to α, and the accuracies of the estimated α are discussed. Comparing the PDS and PL results, it is revealed that nonradiative recombination centers leading to the reduction of the near-band-edge PL intensity are not the dominant sources of SOAs in GaN. Other in-gap states formed by impurities and/or their complexes with vacancy-type defects are possible sources of a large SOA in the MOCVD-grown GaN template. Considering the PDS results and reported peak reflectivity of Al1−xInxN/GaN distributed Bragg reflectors, the α value of sub-100 nm-thick Al1−xInxN alloy grown on GaN/sapphire template is expected to be ≈100 cm−1 or less below 3.0 eV.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, U. Schwarz, Appl. Phys. Lett. 2006, 89, 241127.
- 2 M. Funato, Y. S. Kim, Y. Ochi, A. Kaneta, Y. Kawakami, T. Miyoshi, S. Nagahama, Appl. Phys. Express 2013, 6, 122704.
- 3 E. Kioupakis, P. Rinke, C. G. Van de Walle, Appl. Phys. Express 2010, 3, 082101.
- 4 M. Kuramoto, C. Sasaoka, N. Futagawa, M. Nido, A. A. Yamaguchi, Phys. Status Solidi A 2002, 192, 329.
- 5 L. Q. Zhang, D. S. Jiang, J. J. Zhu, D. G. Zhao, Z. S. Liu, S. M. Zhang, H. Yang, J. Appl. Phys. 2009, 105, 023104.
- 6 M. Martens, C. Kuhn, E. Ziffer, T. Simoneit, V. Kueller, A. Knauer, J. Rass, T. Wernicke, S. Einfeldt, M. Weyers, M. Kneissl, Appl. Phys. Lett. 2016, 108, 151108.
- 7 T. Kinoshita, K. Hironaka, T. Obata, T. Nagashima, R. Dalmau, R. Schlesser, B. Moody, J. Xie, S. Inoue, Y. Kumagai, A. Koukitsu, Z. Sitar, Appl. Phys. Express 2012, 5, 122101.
- 8 I. Gamov, C. Hartmann, T. Straubinger, M. Bickermann, J. Appl. Phys. 2021, 129, 113103.
- 9 D. Alden, J. S. Harris, Z. Bryan, J. N. Baker, P. Reddy, S. Mita, G. Callsen, A. Hoffmann, D. L. Irving, R. Collazo, Z. Sitar, Phys. Rev. Appl. 2018, 9, 054036.
- 10 K. Lorenz, N. Franco, E. Alves, I. M. Watson, R. W. Martin, K. P. O’Donnell, Phys. Rev. Lett. 2006, 97, 085501.
- 11
A. Castiglia, E. Feltin, G. Cosendey, A. Altoukhov, J.-F. Carlin, R. Butté, N. Grandjean, Appl. Phys. Lett. 2009, 94, 193506.
10.1063/1.3138136 Google Scholar
- 12 K. Arakawa, K. Miyoshi, R. Iida, Y. Kato, T. Takeuchi, M. Miyoshi, S. Kamiyama, M. Iwaya, I. Akasaki, Jpn. J. Appl. Phys. 2019, 58, SCCC28.
- 13
A. Paliwal, K. Singh, M. Mathew, Semicond. Sci. Technol. 2020, 36, 015006.
10.1088/1361-6641/abc455 Google Scholar
- 14 K. Ikeyama, Y. Kozuka, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki, Appl. Phys. Express 2016, 9, 102101.
- 15
T. Furuta, K. Matsui, K. Horikawa, K. Ikeyama, Y. Kozuka, S. Yoshida, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki, Jpn. J. Appl. Phys. 2016, 55, 05FJ08.
10.7567/JJAP.55.05FJ11 Google Scholar
- 16 M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, T. Takeuchi, Appl. Phys. Lett. 2018, 112, 111104.
- 17 M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, T. Takeuchi, Appl. Phys. Express 2018, 11, 112101.
- 18 T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki, Rep. Prog. Phys. 2019, 82, 012502.
- 19 T. Onuma, S. F. Chichibu, Y. Uchinuma, T. Sota, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Appl. Phys. 2003, 94, 2449.
- 20 K. Wang, R. W. Martin, D. Amabile, P. R. Edwards, S. Hernandez, E. Nogales, K. P. O’Donnell, K. Lorenz, E. Alves, V. Matias, A. Vantomme, D. Wolverson, I. M. Watson, J. Appl. Phys. 2008, 103, 073510.
- 21 R. Butté, J.-F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G. B. H. Baldassarri Höger von Hög, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G. Lagoudakis, J. J. Baumberg, N. Grandjean, J. Phys. D 2007, 40, 6328.
- 22 S. F. Chichibu, K. Hazu, K. Furusawa, Y. Ishikawa, T. Onuma, T. Ohtomo, H. Ikeda, K. Fujito, J. Appl. Phys. 2014, 116, 213501.
- 23
K. Kojima, D. Kagaya, Y. Yamazaki, H. Ikeda, K. Fujito, S. F. Chichibu, Jpn. J. Appl. Phys. 2016, 55, 05FG04.
10.7567/JJAP.55.05FG04 Google Scholar
- 24 L. Y. Li, K. Shima, M. Yamanaka, K. Kojima, T. Egawa, A. Uedono, S. Ishibashi, T. Takeuchi, M. Miyoshi, S. F. Chichibu, Appl. Phys. Lett. 2021, 119, 091105.
- 25 L. Y. Li, K. Shima, M. Yamanaka, T. Egawa, T. Takeuchi, M. Miyoshi, S. Ishibashi, A. Uedono, S. F. Chichibu, J. Appl. Phys. 2022, 132, 163102.
- 26
S. Marcinkevičius, V. Liuolia, D. Billingsley, M. Shatalov, J. Yang, R. Gaska, M. S. Shur, AIP Adv. 2012, 2, 042148.
10.1063/1.4768670 Google Scholar
- 27 O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, F. Scholz, Jpn. J. Appl. Phys. 1998, 37, 745.
- 28 W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, M. Stutzmann, Phys. Rev. B 1996, 54, 17596.
- 29 D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, M. Stutzmann, J. Appl. Phys. 1997, 82, 5090.
- 30 S. Pimputkar, S. Suihkonen, M. Imade, Y. Mori, J. S. Speck, S. Nakamura, J. Cryst. Growth 2015, 432, 49.
- 31 M. Miyoshi, M. Yamanaka, T. Egawa, T. Takeuchi, J. Crys. Growth 2019, 506, 40.
- 32
H. Fujiwara, in Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons, Ltd., West Sussex, England 2007.
10.1002/9780470060193 Google Scholar
- 33 D. Imai, Y. Murakami, H. Toyoda, K. Noda, K. Masaki, K. Kubo, M. Nomura, M. Miyoshi, T. Miyajima, T. Takeuchi, J. Appl. Phys. 2024, 135, 035703.
- 34 M. Stchakovskya, Y. Battie, A. En Naciri, Appl. Surf. Sci. 2017, 421, 802.
- 35
M. A. Reschikov, M. Vorobiov, D. O. Demchenko, Ü. Özgür, H. Morkoç, A. Lesnik, M. P. Hoffmann, F. Hörich, A. Dadgar, A. Strittmatter, Phys. Rev. B 2018, 98, 125207.
10.1103/PhysRevB.98.125207 Google Scholar
- 36
M. A. Reschikov, D. O. Demchenko, A. Usikov, H. Helava, Y. Makarov, Phys. Rev. B 2014, 90, 235203.
10.1103/PhysRevB.90.235203 Google Scholar
- 37 K. Fujito, S. Kubo, H. Nagao, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 2009, 311, 3011.
- 38 H. Hashimoto, Y. Yoshizumi, T. Tanabe, M. Kiyama, J. Cryst. Growth 2007, 298, 871.
- 39 R. Armitage, Q. Yang, E. R. Weber, J. Appl. Phys. 2005, 97, 073524.
- 40
J. L. Lynos, A. Janotti, C. G. Van de Walle, Phys. Rev. B 2014, 89, 035204.
10.1103/PhysRevB.89.035204 Google Scholar
- 41 F. Liang, D. Zhao, D. Jiang, Z. Liu, J. Zhu, P. Chen, J. Yang, S. Liu, Y. Xing, L. Zhang, Nanomaterials 2018, 8, 1026.
- 42 A. Lesnik, M. P. Hoffmann, A. Fariza, J. Bläsing, H. Witte, P. Veit, F. Hörich, C. Berger, J. Hennig, A. Dadgar, A. Strittmatter, Phys. Status Solidi B 2017, 254, 1600708.
- 43 B. Wang, F. Lian, D. Zhao, Y. Ben, P. Chen, Z. Liu, Opt. Express 2021, 29, 3685.
- 44 A. Hierro, S. A. Ringle, M. Hansen, J. S. Speck, U. K. Mishra, S. P. DenBaars, Appl. Phys. Lett. 2000, 77, 1499.
- 45 C. G. Van de Walle, Phys. Rev. B 1997, 56, R10020.
- 46 S. F. Chichibu, A. Uedono, K. Kojima, H. Ikeda, K. Fujito, S. Takashima, M. Edo, K. Ueno, S. Ishibashi, J. Appl. Phys. 2018, 123, 161413.
- 47 S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBarrs, J. S. Speck, S. Nakamura, Appl. Phys. Lett. 2005, 86, 021914.
- 48 D. Imai, Y. Murakami, R. Miyata, H. Toyoda, T. Yamaji, M. Miyoshi, T. Takeuchi, T. Miyajima, Jpn. J. Appl. Phys. 2020, 59, 121001.
- 49 H. Toyoda, Y. Murakami, R. Miyata, D. Imai, M. Miyoshi, T. Takeuchi, T. Miyajima, Jpn. J. Appl. Phys. 2022, 61, SA1017.
- 50 A. Redondo-Cubero, K. Lorenz, R. Gago, N. Franco, M.-A. F. Poisson, E. Alves, E. Muñoz, J. Phys. D: Appl. Phys. 2010, 43, 055406.
- 51 G. P. Merceroz, G. Cosendey, J.-F. Carlin, R. Butté, N. Grandjean, J. Appl. Phys. 2013, 113, 063506.
- 52 T. Akagi, Y. Kozuka, K. Ikeyama, S. Iwayama, M. Kuramoto, T. Saito, T. Tanaka, T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki, Appl. Phys. Express 2020, 13, 125504.
- 53 J. Dorsaz, J.-F. Carlin, S. Gradecak, M. Ilegems, J. Appl. Phys. 2005, 97, 084505.
- 54 M. Sumiya, Jpn. J. Appl. Phys. 2023, 62, SN1007.